

Use of Secondary Ion Mass Spectrometry as a thin film characterization tool

October 17, 2019

Jeff Mayer, Ph.D. Eurofins EAG

EAG background

- EAG founded by Charles Evans 42 years ago
- Purchased by Eurofins almost 2 years ago
- Eurofins
 - Started in 1987 with four people testing wine
 - 45,000 staff and 800 laboratories
 - Eurofins EAG

Overview of talk

- Introduction to Secondary Ion Mass Spectroscopy (SIMS)
 - Instrumentation
 - Fundamental physics
- Introduction to thin film characterization
 - SiON gate oxide
 - ALD thin films
- Why does SIMS characterization add value
- What are the requirements for analysis
- External calibration possibilities

EAG Bubble Chart

Analytical Resolution vs. Detection Limit

Comparing Analytical Techniques

Depth of Analysis

SIMS Key Applications

- Typical applications include
 - Trace element profiles
 - Major element profiles
 - Survey element profiles
 - Layer structure
- Typical Materials analyzed
 - Semiconductors
 - Dielectrics
 - Metals
 - Polymers

SIMS Technique

Typical Data

Gate oxide analysis

Oxide thickness, N areal density, F dopant

Thin film depth resolution

Difference between samples on the order of one atom layer

SIMS Quantification: Effect of Element

Positive Ion Yields in Silicon

- Secondary ion yields can change by 6 orders of magnitude or more!
- We cannot calculate or predict ion yields (many have tried and failed)
- Ion yields
 depend
 strongly on the
 analysis
 element

SIMS Quantification: Effect of Matrix

- Ion yields depend just as strongly on the sample Matrix.
- Arsenic implanted into silicon shows the familiar implant profile shape.
- The same implant into SiO₂
 on Si looks dramatically
 different.
- The reason? The ion yield for arsenic in oxide is MUCH different.

Composition of AlGaAs

C, Si CONCENTRATION (atoms/cc)

VCSEL active region

SM

DEPTH (nm)

- Case of dopants in semiconductor we use PCOR-SIMS to calibrate in layers of varying composition. Examples include SiGe, AlGaAs, InGaAs.
- Case of contaminants in metal or dielectric stacks ion yield changes may not be corrected.
 - 1. Calibrated using XXX standards, calibration in other layers may have 2x error
 - 2. No sputter rate change with composition applied
 - 3. Profile tails may be compromised by morphology / roughness

Advanced SIMS Sample Preparation

- Common ALD metallization stack consists of a conductor and barrier layer
- SIMS can measure the composition and distribution within the stack interdiffusion
- Requirement for SIMS is to measure the effectiveness of barrier layer
- Front-side SIMS can result in artifacts which distort the real profile
- Analysis from back-side can yield improved depth resolution

Backside SIMS

Sample structure

Backside thinning

Backside SIMS

Additional Thin Film Characterization

- Compare and contrast XPS and SIMS
- Strength and weakness of XPS
- Introduce RBS and an supporting partner to SIMS

XPS Process

XPS depth profile

SIMS Profile of Thin Oxide Film

Limitations of XPS Depth Profile

- Cannot quantify hydrogen
- Depth resolution is not as good as SIMS, 3nm versus 0.5nm
- Detection limit is not as good SIMS, 1000ppm versus 1ppm
- Dynamic range is not as good as SIMS, 2 decades versus 5
- Preferential sputtering introduces calibration error

Elements blue and yellow produce a compound green

Ion bombardment produces an altered layer teal

RBS Instrument Configuration

- MeV ions from an electrostatic accelerator are focused on a sample in a vacuum chamber for analysis
- Typically, 2.2 MeV He2+ ions are used (α particles)

Accelerator Based Techniques

Scattering Yields and Energies

Effects of RBS Scattering Geometry

- Atoms scattered directly backwards out of the sample undergo the minimum energy loss versus depth
- Atoms escaping nearly tangent to the sample surface undergo a much larger energy loss versus depth
- This difference can be used to optimize RBS depth resolution
- Can also be used to resolve ambiguities from data acquired at a single angle

Limitations of RBS

- Films should be greater than 10nm
- Elements with similar Z cannot be separated
- Stack structure should be modeled prior to analysis
- Low Z elements (C, N, O, F) may not be resolved
- Depth resolution not as good as SIMS
- Low Z elements better by SIMS

Conclusion

- XPS analysis of thin films is easy, if not always accurate
- SIMS analysis of thin films is not easy, but adds value because:
 - better depth resolution than many techniques
 - dynamic range and detection sensitivity allow for measurement of composition and contamination
- Calibration from other techniques can enhance SIMS accuracy