

Advanced Display Manufacturing Technology

John Busch

Vice President, New Business Development Display and Flexible Technology Group

September 28, 2017

Safe Harbor

This presentation contains forward-looking statements, including those regarding anticipated growth and trends in Applied's businesses and markets, industry outlooks, technology transitions, and other statements that are not historical facts. These statements are subject to risks and uncertainties that could cause actual results to differ materially from those expressed or implied by such statements and are not guarantees of future performance. Information concerning these risks and uncertainties is contained in Applied's most recent Form 10-K or 10-Q and other filings with the SEC. All forward-looking statements are based on management's current estimates, projections and assumptions, and Applied assumes no obligation to update them.

Applied Materials is the world's leading display and flexible electronics equipment manufacturer with 25 years of materials engineering experience on large area rigid and flexible substrates

> GEN 10+ GLASS

> > 9.9m²

300mm Wafer

Applied's Display and Flexible Technology Products

CORE PRODUCT PORTFOLIO

NEW PRODUCTS (launched in 2016)

Thin Film Encapsulation

E-Beam Tester

Roll-to-Roll E-Beam Evaporation PVD CVD

In-Line SEM Review

Displays are the Window to the Information Universe

New Display Era on the Horizon

Display Technology Roadmap

Display "Mega-Trend": Components to Process

Key Technology Challenges for Flexible Displays

Increasing Complexity in Semi...and Display

Display can Leverage 30 Years of Semi Technology, Methodology and Knowhow

Backplane Yield Challenge Example: Particles

Smaller TFTs have more (& smaller) killer particles

- OLED TFT active area larger than LCD increasing chance of "killer particle"
- Increasing resolution increases # transistors/area → requires smaller TFT
 → increases # of killer particles

External use

Semiconductor Methodologies for Advanced Displays Example: Yield Management

Semiconductor Yield Management: Enabled by Inline SEM

New Inspection Methodology for Advanced Displays

Old way (Lab SEM)

New way (Inline SEM)

Long Cycle Time

Low Sampling Rate

Non-destructive Inspection

High Throughput

High Sampling Rate

Inline SEM Brings Semi Methodologies to Display

Accelerates yield by "connecting the dots" Inline SEM + yield management software \rightarrow fast ramp & high yield

EBR Time Machine

Thin Film Encapsulation (TFE) Requirements

Flexible OLED Device

Barrier Performance Stress Control Optical Transmittance

Mask Depo

Buffer Technology

PROCESS	REQUIREMENTS	PURPOSE
Depo temperature	<100°C	Device protection
Mask depo	Mask deposition	Bonding pad
Water vapor transmission rate (WVTR)	<1E-6g/m ² ·day	Long lifetime
High deposition rate	>2,500A/min	High throughput
Low stress	~ 0	Avoid cracking of metal electrodes or film itself
High visible light transmittance	>90% at wavelength ≥400nm	Increase brightness
Good adhesion	No film peeling	Device integrity
High flexibility	Mechanical duration	Tolerate mechanical bending through lifetime
Conformal particle coverage	No voids or diffusion channels	Eliminate water and oxygen permeation

Enflexor Gen6H TFE Solutions for High Resolution Flexible OLED

SUBSTRATE SIZE 925 x 1,500mm²

SYSTEM ARCHITECTURE Single substrate operation system at cluster tool

- ► Max 5 TFE process chambers
- Mask chamber
- Pas chamber or DSSL (Dual Single Slot Load lock)
- Transfer chamber
- ► Dual arm vacuum robot

KEY ADVANTAGES

Superior WVTR & uniformity Particle control High system reliability

"One Cluster Solution"

Complete All TFE process in one cluster

- Vacuum Connection to EV tool
- Flexible sequence control by MCC software
- High reliability mainframe and vacuum robot
- Mask deposition with auto mask exchange and mask stocker

Displays are the window to the "information universe" and **better displays are constantly in demand**

Many display technology inflections need materials engineering innovation

Display industry can leverage semiconductor methodologies to enable increasingly complex displays

