Advanced Display Manufacturing Technology

John Busch
Vice President, New Business Development
Display and Flexible Technology Group
September 28, 2017
Safe Harbor

This presentation contains forward-looking statements, including those regarding anticipated growth and trends in Applied’s businesses and markets, industry outlooks, technology transitions, and other statements that are not historical facts. These statements are subject to risks and uncertainties that could cause actual results to differ materially from those expressed or implied by such statements and are not guarantees of future performance. Information concerning these risks and uncertainties is contained in Applied’s most recent Form 10-K or 10-Q and other filings with the SEC. All forward-looking statements are based on management's current estimates, projections and assumptions, and Applied assumes no obligation to update them.
Applied Materials is the world’s leading display and flexible electronics equipment manufacturer with 25 years of materials engineering experience on large area rigid and flexible substrates.
Applied’s Display and Flexible Technology Products

CORE PRODUCT PORTFOLIO

CVD

PVD

NEW PRODUCTS
(launched in 2016)

Thin Film Encapsulation

E-Beam Tester

Roll-to-Roll E-Beam Evaporation PVD CVD

In-Line SEM Review
Displays are the Window to the Information Universe
New Display Era on the Horizon

LCD Era
CRT Replacement

TODAY

OLED Era

Advanced 3-D Era

SCALING

RESOLUTION

FORM FACTOR / VISUAL PERFORMANCE

2-D → “NATURAL” 3-D
Display Technology Roadmap

Resolution

<table>
<thead>
<tr>
<th></th>
<th>TV</th>
<th>PHONE</th>
<th>VR/AR</th>
</tr>
</thead>
<tbody>
<tr>
<td>TODAY</td>
<td>HD</td>
<td>>326ppi</td>
<td>400ppi</td>
</tr>
<tr>
<td>TRANSISTOR</td>
<td>Si</td>
<td>LCD</td>
<td>OLED</td>
</tr>
<tr>
<td>4K</td>
<td>>600ppi</td>
<td>>1000ppi</td>
<td></td>
</tr>
<tr>
<td>8K</td>
<td>>700ppi</td>
<td>>2500ppi</td>
<td></td>
</tr>
</tbody>
</table>

Form Factor / Performance

<table>
<thead>
<tr>
<th></th>
<th>FPD</th>
<th>Curved</th>
<th>Rollable</th>
<th>Foldable</th>
</tr>
</thead>
<tbody>
<tr>
<td>TODAY</td>
<td>LCD</td>
<td>OR</td>
<td>MOx</td>
<td>Flexible</td>
</tr>
<tr>
<td>TRANSISTOR</td>
<td>a-Si</td>
<td>OR</td>
<td>MOx</td>
<td>Flexible</td>
</tr>
</tbody>
</table>

Size

<table>
<thead>
<tr>
<th></th>
<th>TV</th>
<th>PHONE</th>
</tr>
</thead>
<tbody>
<tr>
<td>TODAY</td>
<td>40”</td>
<td>4.5”</td>
</tr>
<tr>
<td>TRANSISTOR</td>
<td>2-D</td>
<td>3-D</td>
</tr>
<tr>
<td>35”</td>
<td>5.5”</td>
<td>>5.5”</td>
</tr>
</tbody>
</table>

- **FPD**: Flat Panel Display
- **LTPS**: Low Temperature Poly-Silicon
- **OLED**: Organic Light Emitting Diode
- **MOx**: Metal Oxide
Display “Mega-Trend”: Components to Process

<table>
<thead>
<tr>
<th>Component</th>
<th>IN-CELL / ON-CELL</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cover glass</td>
<td>Thin film encapsulation / hard coat</td>
</tr>
<tr>
<td>Touch panel</td>
<td>In-cell / on-cell touch</td>
</tr>
<tr>
<td>Polarizer</td>
<td>Wire-grid polarizer</td>
</tr>
<tr>
<td>Color filter</td>
<td>RGB OLED emitter</td>
</tr>
<tr>
<td>Liquid crystal</td>
<td>OLED emitter</td>
</tr>
<tr>
<td>TFT backplane</td>
<td>Wire-grid polarizer</td>
</tr>
<tr>
<td>Polarizer</td>
<td></td>
</tr>
<tr>
<td>Backlight</td>
<td>OLED emitter</td>
</tr>
</tbody>
</table>

Needs Materials Engineering Innovation
Key Technology Challenges for Flexible Displays

DISPLAY
- TSP
- Panel
- FPCB, IC

STRUCTURE
- Cover Window
- Touch Screen
- Encapsulation
- Cathode
- Emitting Layer
- Anode
- Transistor (TFT)
- Substrate

CHALLENGES
- Flexible Window
- Flexible Touch Sensor
- Flexible Encapsulation
- Flexible OLED Emitter
- Flexible TFT
Increasing Complexity in Semi…and Display

Display can Leverage 30 Years of Semi Technology, Methodology and Knowhow
Backplane Yield Challenge Example: Particles

- OLED TFT active area larger than LCD increasing chance of “killer particle”
- Increasing resolution increases # transistors/area → requires smaller TFT → increases # of killer particles
You can’t FIX What you can’t SEE
Semiconductor Yield Management: Enabled by Inline SEM

Display TODAY

10µm 1µm 0.18µm 0.13µm 65nm 32nm 22nm

CD-SEM and SEM review introduction in 80s

SEMI TODAY 90% processes are SEMed!

SEMI

Defect Inspection

AOI (Sub 1µm)

Defect Review

Inline SEM (with EDX)

Yield management (connect the dots → root cause)

DISPLAY

90% processes are SEMed!
New Inspection Methodology for Advanced Displays

Old way (Lab SEM)

- Destructive Inspection
- Long Cycle Time
- Low Sampling Rate

New way (Inline SEM)

- Non-destructive Inspection
- High Throughput
- High Sampling Rate
Inline SEM Brings Semi Methodologies to Display

<table>
<thead>
<tr>
<th>Inspection & Review (defects)</th>
<th>Metrology</th>
</tr>
</thead>
<tbody>
<tr>
<td>Auto Process Inspection (API)</td>
<td>Auto-CD (ACD)</td>
</tr>
<tr>
<td>Auto Defect Review (ADR)</td>
<td></td>
</tr>
</tbody>
</table>

Process & Defects
- ITO residue

Composition Analysis
- EDX & BSE

LTPS Grain Analysis
- ELA in-line Monitoring
 - No Secco Etch

CD Measurements

Accelerates yield by “connecting the dots”
Inline SEM + yield management software → fast ramp & high yield
EBR Time Machine

[w/o EBR]
- Process time \leq 60sec
- Inspection \leq 60 sec
- Measurement \leq several mins
- Analysis \geq several hours or days

[w/ EBR]
- Process time \leq 60sec
- Inspection \leq 60 sec
- Measurement \leq several mins
- Analysis \sim several mins
Thin Film Encapsulation (TFE) Requirements

PROCESS

<table>
<thead>
<tr>
<th>REQUIREMENTS</th>
<th>PURPOSE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Depo temperature</td>
<td><100°C</td>
</tr>
<tr>
<td>Mask depo</td>
<td>Mask deposition</td>
</tr>
<tr>
<td>Water vapor transmission rate (WVTR)</td>
<td><1E-6g/m²-day</td>
</tr>
<tr>
<td>High deposition rate</td>
<td>>2,500Å/min</td>
</tr>
<tr>
<td>Low stress</td>
<td>~ 0</td>
</tr>
<tr>
<td>High visible light transmittance</td>
<td>>90% at wavelength ≥400nm</td>
</tr>
<tr>
<td>Good adhesion</td>
<td>No film peeling</td>
</tr>
<tr>
<td>High flexibility</td>
<td>Mechanical duration</td>
</tr>
<tr>
<td>Conformal particle coverage</td>
<td>No voids or diffusion channels</td>
</tr>
</tbody>
</table>

Barrier Performance
- Stress Control
- Optical Transmittance

Mask Depo

Buffer Technology

Flexible OLED Device

- **OLED & Thin Film Encapsulation**
 - Barrier Layer
 - Buffer Layer

- **PI Barrier**
 - PI (Poly-imide)

- **TFT**

External use
Enflexor Gen6H TFE Solutions for High Resolution Flexible OLED

SUBSTRATE SIZE
925 x 1,500mm²

SYSTEM ARCHITECTURE
Single substrate operation system at cluster tool
- Max 5 TFE process chambers
- Mask chamber
- Pas chamber or DSSL (Dual Single Slot Load lock)
- Transfer chamber
- Dual arm vacuum robot

KEY ADVANTAGES
Superior WVTR & uniformity
Particle control
High system reliability
“One Cluster Solution”

Complete All TFE process in one cluster

- Vacuum Connection to EV tool
- Flexible sequence control by MCC software
- High reliability mainframe and vacuum robot
- Mask deposition with auto mask exchange and mask stocker

TFE Technology for OLED mass production new concept

All process under vacuum
Displays are the window to the “information universe” and better displays are constantly in demand.

Many display technology inflections need materials engineering innovation.

Display industry can leverage semiconductor methodologies to enable increasingly complex displays.