

<u>eMRAM</u>: From Technology to Applications

David Eggleston

VP Embedded Memory

10,000 foot view What are we trying to achieve?

Distance to Compute

Distance to Compute

Distance to Compute

Time, Herefolded Menoration (Constance) reduces the Distance; saves Time and Energy

Embedded Memory...

Persists: 1. Code 2. Data 3. State

<u>Saves:</u> 4. Time 5. Energy

Embedded Memory NV Options

Embedded Memory: Non-Volatile Options

Embedded Memory: Non-Volatile Options

eMRAM

<u>Pro:</u> speed, endurance, versatility, masks <u>Con:</u> complex stack, data retention

eFlash

Pro: data retention Con: speed, masks

eRRAM

<u>Pro:</u> simple stack, masks <u>Con:</u> speed, endurance, data retention

Embedded Memory: Customer Usage

Embedded Memory: Technology

Embedded Memory: Time Horizon

eMRAM: Two bitcells

 By varying the materials in the MRAM bitcell, the memory can be tuned for data retention (-F), or speed and endurance (-S)

Embedded Memory: Technology

Embedded Memory: Technology Comparison

	eFlash	eMRAM-F	eMRAM-S
Speed (Rd/Wr)	20ns / 20us	20ns / <50ns	≈ 5ns / 10ns
Cell size	40F ²	45F ²	70F ²
Endurance	10 ⁵	≈10 ⁸	≈1 0 ¹⁴
Data Retention	>20 years	10 years	1 month
Op Temp (Ambient)	125C Auto grade 1	105C Industrial	TBD

DRAFT SPECIFICATIONS ONLY

Applications

Target Application: IoT

Power and Area Efficiency

IoT: Architectural Elements

SOC

IoT: Architectural Elements

The "Killer Combo" for IoT

> Secure, connected, zero power things

Realized in FDSOI process for maximum power efficiency

IoT Benefits from eMRAM based SoC

- 1. Area efficiency
- 2. Speed
- 3. Endurance
- 4. Power efficiency
- 5. Very fast wake up
- 6. Normally off compute

Power Efficiency Supplants Delay Power Efficiency Supplants Delay

25

© GLOBALFOUNDRIES / NCCAVS TFUG, April 2016

NV-Logic

- What is it?
 - Completely new NV library
 - NV-FF, NVE, NVSRAM, NV-LIM
 - Use MTJ as a nv-memory circuit element
- How to use it?
 - NV-FPGAs
 - NV-ASICs
 - Normally off computing
 - Extreme low power consumption/very fast wake-up and resume
- What will it take?
 - Stable eMRAM technology built on advanced logic process
 - NV compute architecture
 - NV-FPGAs

Nonvolatile logic-in-memory architecture Logic-in-Memory Architecture (proposed in 1969): Storage elements are distributed over a logic-circuit plane. **Magnetic Tunnel Junction** (MTJ) device No volatility Unlimited endurance MTJ lave Fast writability Scalability CMOS compatibility 3-D stack capability Storage is nonvolatile: (Leakage current is cut off Static power is cut off MTJ devices are put Chip area is reduced. on the CMOS layer Wire delay is reduced. Storage/logic are merged: Dynamic power is reduced. (global-wire count is reduced) Nonvolatile Processor Architecture

Dev operation concept of MTJ/CMOS Latch

T. Endoh et al., IEDM, pp. 75-78, Dec. 2011. @ Endoh Gr. of Tohoku Univ.

NV-Logic Power Savings

- Combination MTJ-CMOS latch allows realization of NV-logic now (can use eMRAM-F)
- Research has shown dramatic energy reduction in 32b MPU's
- 4.6B units and \$7.4B annual shipments of 32b microcontrollers

Experimental Result for the Energy Reduction of MPU with NV-F/F

Applying MTJ-based embedded nonvolatile memory (NV-F/F) to general-purpose MPU, significant energy reduction has been achieved.

H. Koike et al., SSDM, Paper A-7-1, Sep. 2014, pp. 448-449. @Endoh Gr. of Tohoku Univ.

- IP vendors designing NV-Logic elements
- NV-Logic elements integrated into popular design libraries
- NV-Logic compatible simulation tools
- NV-FPGA's for protoyping and small scale production
- Foundry support for NV-Logic compatible processes

eMRAM and eFlash Bitcells

eMRAM bitcell operation: Store magnetic polarity

- Direction of voltage bias applied across the MTJ stack causes Free Layer to switch direction of magnetic polarity (P → AP, or AP → P)
- Polarity of the Free Layer can be read as low (P) or high (AP) resistance
- Free Layer polarity is retained after power is removed

eFlash bitcell operation: Store charge

Example of cell operating conditions:

	WL		BL		SL		CG		EG
	Sel.	Unsel.	Sel.	Unsel.	Sel.	Unsel.	Sel.	Unsel.	Sel.
Read	Vrd	0	Vblrd	0	0	0	Vrd	Vrd	0
Erase	0	0	0	0	0	0	0	0	Hve
Program	Vpwl	0	Vblp	Vinh	MVp	0	HVp	Vrd	MVp

- Application of high voltage bias on the coupling gate or erase gate moves charge to/from the Floating Gate (no charge → charge, or charge → no charge)
- Charge on the Floating Gate can be read as low (no charge) or high (charge) resistance
- Floating gate charge is retained after power is removed

Comparison of eMRAM and eFlash

	eMRAM	eFlash
Storage mechanism	Polarity	Charge
Storage element	Free Layer	Floating Gate
Switching bias	Logic voltage	High voltage
Best attribute	Write speed, endurance	Data retention
Worst attribute	Complex stack	Doesn't scale
Integration	BEOL; btw metal layers	FEOL; in substrate
Mask adders	+3	+12
Select device	Logic transistor	Built-in sel transistor
Bitcell configuration	1T + 1 MTJ	0.5T + 1FG
System usage	Code, Data	Code
Macro types	eFlash, SRAM	eFlash

Barriers

Technical Barriers

- 1. Solder reflow retention
 - 260°C, 5 mins
- 2. Magnetic immunity> 500-800 Oe (Gauss)
- 3. Bit density vs. eFlash▶ 15% smaller macro

- Bit density vs. HD SRAM
 > 4x more dense
- 2. Speed vs. F²
 - > Write/Read < 5ns</p>
- 3. Leading edge processes
 - 14nm, 7nm FinFET

1. Deposition

Complex stack of thin materials; many different atoms

2. Etch

pMTJ definition; etching dissimilar materials, small CD

- 3. Magnetic Anneal
 - Set magnetic polarity; no existing production tool

- 1. Cost, cost, cost
 - Customers will NOT pay for speed/endurance/power
- 2. CapEx/Tool throughput
 - Cost of dedicated tooling and throughput too high
- 3. Customer adoption
 - Schedule and reliability risk must be offset by cost

GLOBALFOUNDRIES Position

GLOBALFOUNDRIES Company Highlights

eMRAM and MRAM

	Standalone MRAM	eMRAM
Technology	STT	STT
Bitcell	in-plane \rightarrow perpendicular	perpendicular
Usage	data	code, data
Capacity	$256Mb \rightarrow 1Gb$	32Mb, 64Mb, 128Mb
Interface	DDR	eFlash or SRAM
Feature	Speed, endurance	Data retention

GLOBALFOUNDRIES is fabricating both types

Lead customer success with GLOBALFOUNDRIES built MRAM

Everspin Releases Highest Density MRAM Products to Create Fastest And Most Reliable Non-Volatile Storage Class Memory

Everspin plans production of 256Mb & 1Gb products, bringing the most advanced memory solutions to the multi-billion dollar market for persistent memory in storage devices and servers.

Chandler, AZ, April 13, 2016

Everspin Technologies announced today that it is shipping 256Mb ST-MRAM samples to global customers, enabling new product solutions using a true MRAM-based Storage Class Memory (SCM). This 256Mb ST-MRAM product breaks the record for the highest density commercial MRAM currently available in the market. Everspin, having held the previous record, has

Con Tutto: Prototyping Platform

Differential Memory Interface Connector

- Prepare for Future Memories: Enable MRAM, PCM, RRAM on the P8 memory bus
- Evaluate NVDIMMs: Enable NVDIMM-N/F in Power systems, functionally evaluate
- Innovate: Enable industry and OpenPOWER partners to innovate on the P8 Differential Memory Interface link

Activity

- NVmem Software Stack Changes
- Technology Enablement
 - NVDIMM-N Ongoing ~2Q16
 - MRAM Operational now Everspin
 - Investigating other technologies
- Near-Memory Acceleration Zurich

POWER System with MRAM Memory

Revolutionizing the Datacenter

GLOBALFOUNDRIES eMRAM

Final word...

Embedded Memory...

GLOBALFOINDRIES[®] **Embedded Memory** Solving your product challenges for the hyperconnected world

Thank you

dave.eggleston@globalfoundries.com

Trademark Attribution

GLOBALFOUNDRIES[®], the GLOBALFOUNDRIES logo and combinations thereof, and GLOBALFOUNDRIES' other trademarks and service marks are owned by GLOBALFOUNDRIES Inc. in the United States and/or other jurisdictions. All other brand names, product names, or trademarks belong to their respective owners and are used herein solely to identify the products and/or services offered by those trademark owners.

© 2015 GLOBALFOUNDRIES Inc. All rights reserved.