

Jacques Matteau Global Sales Manager

NanoFoil – Novel use for Exploration of Mars

jmatteau@indium.com indium.us/F014

Reactive Materials

Reaction Product	Heat of Reaction (kJ/mol)	Adiabatic Temperature (°C)	Phase of Product
TiB_2	-108	2920	solid & liquid
ZrB_2	-108	3000	solid & liquid
HfB_2	-110	3370	solid & liquid
TiC	-93	3067	solid & liquid
ZrC	-104	3417	solid & liquid
HfC	-105	3830	solid & liquid
Ti ₅ Si ₃	-72	2120	solid & liquid
Zr_5Si_3	-72	2250	solid & liquid
Nb ₅ Si ₃	-57	2060	solid
<mark>NiAl</mark>	<mark>-59</mark>	<mark>1639</mark>	solid & liquid
ZrAl	-45	1480	solid & liquid
PdA1	-92	2380	liquid

Heats of Reaction and Maximum Reaction Temperatures

SHS

Self Propagating High Temperature Synthesis Reactions

- Formation reactions: **Ni/AI**, Ti/C, Zr/Si, etc.
 - $-\Delta H_{rxn}$ = 30 to 100 kJ/mol-atom

$$-T_{max} = 1000^{\circ}C \text{ to } 3000^{\circ}C$$

- Thermite Reactions: Al/CuOx, Al/FeOx, etc.
 - $-\Delta H_{rxn} = 100$ to 150 kJ/mole-atom
 - $-T_{max} = 2000^{\circ}C \text{ to } 4000^{\circ}C$

NanoFoil Fabrication

- Magnetron Sputter Deposited
- Free-standing Foils (10-200µm thick)
- Bilayer Thicknesses 10 to 500nm
- Use Ni and Al layers
- Several 1000 layers

Modeling Reaction Self-Propagation and Ignition

NanoFoil General Reaction Scheme

- (A) Photo of the exothermic wave (A);
- (B) SEM picture of the quenched reaction front;
- (C) TEM pictures of the reaction zone;
- (D) dynamics of the thickness of:
- Ni layer (Δ), Al-rich layer (□), and bilayer period (○),
- I-initial structure, II Ni dissolution, III NiAl precipitation;
 (E) schematic draw of the wave structure.

The sequence of the process stages can be represented as follows:

 $Ni(s) + Al(s) \otimes Ni(s) + Al(m);$ $Ni(s) + Al(m) \otimes Ni(s) + AlNix(m);$ $Ni(s) + AlNix(m) \otimes AlNi(s),$

At the first stage, the aluminum melts just above the reaction front due to heat flow from the reaction zone.

Melting of AI initiates partial dissolution of the

Ni layers (stage 2) into AI melt until the saturation concentration (x \sim 0,25 - 0,3) is reached.

At the third stage, solid grains of the NiAl B2-phase nucleate and grow. The characteristic feature of the process is that the grains have different crystallographic orientations and are separated by liquid/amorphous interlayers. The existence of the liquid between the solid grains allows Ni to dissolve into the melt by means of liquid-state diffusion, which is much faster than solid state diffusion across the intermetallic solid compound.

Measured Heats of Reaction

NanoFoil[®] Forms

- Largest Manufactured Piece: 43.5" x 9"
- Smallest Produced Size: .010"x .010"*
- Cutting Methods
 - Laser
 - Chemical Milling
 - Stamping
 - Hand Cutting
- Packaging
 - Tape and Reel
 - Waffle Pack
 - Freestanding

* Can be cut smaller,

Above: NanoFoil[®] with LED board and components Left: Freestanding NanoFoil®

Tin Plated NanoFoil®

- Tin acts as solder
 - no solder preforms or prewet needed
- Works with standard board finishes
 - Immersion tin
 - ENIG
 - Immersion silver
- Lead-free and lead-tin compatible
- Thickness 5µm (0.0002") to 0.0012" (30µm) per side

SEM image: 40µm NanoFoil + 4µm tin each side

Ignition Methods

- Several techniques are available, depending on joint geometry
- Ignition methods should be optimized for each customer/application:
 - Electrical heating: good for automated assembly
 - Laser: suitable for automated assembly
 - Spark: good for manual assembly
 - Flame/torch: avoids electric charge
 - Induction: NanoFoil® need not be exposed
 - Mechanical: Special applications

NanoFoil[®] Reaction

Before reaction

During reaction

Final Product: Al-Ni Intermetallic

TEM of reacted NanoFoil

Mars 2020 Current Plan

Timeline for Mission 2020

Land the Rover

Cache

Back To Earth

Summary

- External Orbital Sample sterilization
 - Coating sphere with NanoFoil
 - Igniting Nanofoil after retrieval from Mars
 - Key to mission
 - No terrestrial contaminants
 - No Martian contaminants
 - NanoFoil sterilization
 - Work in progress

Maximize possibility of identification of Martian Biosignature(s) in samples

