

Fueling the Future: High-Density Hydrogen Storage in Hybrid Nanomaterials

NCCAVS TFUG Meeting September 22, 2014

Jeff Urban The Molecular Foundry, Berkeley Labs foundry.lbl.gov

The Importance of Hydrogen as an Energy Carrier

How will we fuel ourselves in the future?

Historical trend toward decarbonization is clear

- Not quite the Carbon equivalent of "Moore's Law":
- H₂ generation, storage, distribution all imperfect at present

IIASA, BP (1965-2001), CDIAC, Ausabel (2007)

Why Hydrogen?

Major OEM Activities and Plans for FCEVs

Ford, Daimler AG, and Renault-Nissan announced a partnership to speed up the development of zero-emission fuel cell electric vehicles by sharing the costs of investment.

BMW and **Toyota** are close to finalizing a deal for the future of each automaker's hydrogen fuel cell technology.

	Toyota [*]	 2010-2013: U.S. demo fleet of 100 vehicles 2015: Target for large-scale commercialization "FCHV-adv" has achieved 431-mile range and 68 mpgge
	Honda*	 Clarity FCX named "World Green Car of the Year"; EPA certified 72mpgge; leasing up to 200 vehicles 2015: Target for large-scale commercialization
DAIMLER	Daimler*	 Small-series production of FCEVs began in 2009 Plans for tens of thousands of FCEVs per year in 2015 – 2017 and hundreds of thousands a few years after In partnership with Linde to develop fueling stations. Recently moved up commercialization plans to 2014
MARIN	Nissan*	 FCEVs are key part of "Nissan Green Program"
GM	General Motors*	 115 vehicles in demonstration fleet 2012: Technology readiness goal for FC powertrain 2015: Target for commercialization
Ð	Hyundai- Kia*	 2012-2013: 2000 FCEVs/year; 2015: 10,000 FCEVs/year "Borrego" FCEV has achieved >340-mile range.
	vw	 Expanded demo fleet to 24 FCEVs in CA Recently reconfirmed commitment to FCEVs
Ö	BMW	Planning potential partnership with GM on FCEVs
* In 2009, s widespread investment	everal major a d commercializ t in H ₂ infrastru	uto manufacturers signed a letter of understanding anticipating ration of FCEVs beginning in 2015 and calling for increased icture (Ford and Renault not shown here).

Hydrogen has a high energy density, it is abundant, and H_2O is the sole combustion product

The "big 8" major auto manufacturers (BMW, Toyota, Honda, Hyundai, etc) have committed to Hydrogen FCEVs

Molecular from energy.gov

Challenges to Efficient Gas Storage

Nature 2001, 414, 353

Notable properties of Magnesium (Mg):

- Environmental friendliness, low cost, earth abundant
- High H₂ gravimetric density (7.6 wt%) (DOE 2017 Target is 5.5 wt%)
- High bond formation enthalpy. Temperatures of 350 400 °C needed.
- Poor kinetics, oxidative instability

Designing Optimum Hydrogen Storage Materials

Storage Density Metal hydride

Storage Kinetics

Nanoscale Material

Target system is hybrid material: Mg nanocrystals in a gas-selective matrix

System Advantages

- high storage capacity of Mg (7.6 wt %)
- many potential routes to enhance kinetics

Air-Stability

Gas-Selective Matrix

- air-stable and injectable/moldable
- robust to size-changes from cycling

New Platform: Air-Stable Mg-PMMA Composites

Poly(methyl methacrylate) (PMMA) H₂/O₂ permeability: 42.9

Nature Materials **2011**, 10, 286-290 *Energy Environ. Sci.*, **2013**, 6, 3267–3271

Storage and Stability in Mg-PMMA Composites

 Metal-hydride polymer nanocomposites can be a new platform for stable and highperformance gas storage

Nature Materials 2011, 10, 286-290

Surprising Dual Enhancement of Storage and Stability

Remarkable dual enhancement drives up both loading and stability! Now absorbing over 90% of theoretical maximum for Mg metal

Energy Environ. Sci., 2013, 6, 3267–3271

Counter-Intuitive Optimization: More Nanocrystals, Less Oxidation

Why Loading Inversely Correlates with Permeability

1. Increased tortuosity: particles now packed more densely than mfp of gas

2. Morphological changes: Polymer-NP interactions rigidify polymer, reduce chain mobility

Model: volume fraction > 42% polymer chain motion dominated by interaction with NPs

> *J. Membr. Sci.* **2006**, 270, 13-21 *Phys. Rev. Lett.* **2012**, 109, 118001

Factor [PMMA]	Wt% Mg	Vol% Mg	H ₂ absorption, wt%
1.00	33.2 ± 0.9	25.4	4.86
0.75	49 ± 1	39.6	5.45
0.50	54.7 ± 0.6	45.2	6.07 vol% > 42
0.42	58.2 ± 0.6	48.8	6.44
0.30	65 ± 2	55.9	6.95

Enhancing the Kinetics of H₂ Sorption

Approach: Catalyst dopants

➔ Enhance dissociation of H₂ for better absorption, improved diffusion in hydrided phase

Molecular Foundry

Mg Nanocrystal Doping: H₂ Sorption Accelerated

• Small amount of dopant (5 wt% per Mg) has dramatic impact on kinetics – now meeting kinetic filling targets...

Mg Doping: Enhancing Kinetics of H2 Sorption

Absorption	∆H (kJ/mol K)	∆S (J/mol K)	Ea (kJ/mol)	P _{eq} @ 300 °C (bar)
Mg - bulk	-74.6	-135	95-130	
Mg	-34.1	-62.6	L 90.7 /P 99.7	2.5
Mg-X	-34.2	-62.3	L 69.5 /P 83.5	2.4

Shift in P_{eq} increases driving force

	Desorption	∆H (kJ/mol K)	∆S (J/mol K)	Ea (kJ/mol)	P _{eq} @ 300 °C (bar)		
	Mg - bulk	75	130	120-160			
	Mg	35.5	63.4	TBD	1.4		
	Mg-X	33.8	60.7	L 115.7/P 104.2	1.7		
Ν	Molecular 😡 Foundry 😤						

Toward the Atomic Limit for Separations: Graphene Layers as Gas Barrier

Graphene Oxide (GO) as a selective hydrogen barrier layer

 GO layers exhibit high mixed gas separation selectivities: 3400 (for H₂/CO₂ mix) and 900 (for H₂/N₂ mixtures)

Multilaminate "Ravioli" of Reduced Graphene Oxide (rGO) and Mg Nanocrystals

Hydrogen Absorption & Desorption in rGO-Mg

Absorption at 200°C & 15 bar Desorption at 300°C & 0 bar

- The Mg NCs absorb 7.3 wt% H2 in Mg (theoretically 7.6wt%)
- H₂ sorption is 6.3 wt% for total composite (beyond FCEV target- 5.5%!)

E.S.Cho et al, submitted

Cycling and Temperature Dependence

Cyclability and lower temperature performance are key metrics

Multilaminate composite shows good cycle-ability and promise for low T

E.S.Cho et al, *submitted*

Stability of Composite: Metallic Nano-Mg Air-Robust

Mg MgH₂ Mg(OH)₂ MgO

Molecular

Foundry

• The composite shows a combination of Mg and MgH₂ after cycling, and excellent air stability

Raman Spectroscopy on rGO-Mg Laminates

- D peak corresponds to defect sites and related to sp² domain size; the G peak originates from sp² C=C, and 2D peak provides information on the number of layers of graphene.
- I(D)/I(G) is increased after synthesis, consistent with GO reduction

E.S.Cho et al, submitted

In-Situ Methodology for Nanoscale Phase Transitions

Bardhan, Hedges, Whitelam, Urban Nature Materials (2013)

- First direct imaging of in-situ hydriding phase transitions
- Developed new framework for nanoconfinement on reactive transformations
- Implications for catalysis, batteries, etc.

Acknowledgements (This Work)

Staff Scientists/Engingeers (PIs)

Post Docs/Students:

Funding support:

Shaul Aloni Peter Ercius Anne Ruminski Eun Seon Cho Alyssa Brand DOE – BES BAPVC SERIIUS

