Graphene-based Electrodes for Electrochemical Energy Conversion

September 23, 2014 AVS North California Chapter

Graphene for electrochemical devices

Properties

- Electron conducting
- High surface area
- Catalytic

Applications

- Batteries
- Supercapacitors
- Fuel Cells
- Sensors

...

What is a fuel cell?

Electrochemical "Energy Conversion" Device

Driving force?

Ans. The chemical potential difference between the reactants $(H_2 + O_2)$ and the product (H_2O)

Solid Oxide Fuel Cell (SOFC)

High Operating Temperature > 800 °C

- Advantages
 →Fuel Flexibility
 →Simpler System

 (No humidity control, etc.)
- Disadvantages
 →Material/Part selection
 →Durability
 - →Limited applicability

Lower Operating Temperature! (< 400 ℃)

Reduction in T causes significant Losses!

Both ohmic and activation loss $\propto exp(E_a/kT)$

To counteract the significant ohmic loss

Thinning the electrolyte < 100 nm

Y. B. Kim et al. Electrochem. Comm., 13, 403, 2011

To counteract the significant electrode loss

Need a totally new material system because...

Conventional perovskite-based electrodes
 → Not active at low temperatures

- Pt-based electrode
 → Expensive
 - → Fast degradation

New air electrode (cathode) materials for LT-SOFCs

Doped Graphene?

Why graphene as the cathode?

- Graphene (and its derivatives)
 - Extraordinary thermal and electrical conductivities
 - High specific surface area (theoretically 2630 m²/g for single-layer)
 - Strong mechanical strength and flexibility
 - Excellent catalytic activity (Doped Graphene)

N-doped Graphene as an ORR catalyst in Fuel Cell -

- Catalytically superior to Pt
- Highly durable
- Resistant to CO and methanol poisoning

Qu et al. ACS Nano, 4, 1321, 2010

Solution & symmetric cell preparation procedure

GO (Graphene Oxide)

Flake graphite powder

Expansion of graphite sheets

Oxidization using KMnO₄

MERC

Filtration with PTFE filter

Graphene oxide solution

Centrifuging to remove unexfoliated particles

Sonication for better dispersion

NrGO (Nitrogen Doped Reduced Graphene Oxide)

GO solution + dicyandiamide(DCDA) + D.I. water

Teflon-lined auto-clave

Hydrothermal rxn. @ 140, 180°C

sonication in the suspension (90% water+10% MeOH)

Electrochemical Impedance Meas.

- Thermal stability of Pt: accelerated agglomeration

Agglomeration of Pt

At 500°C for 5 hrs

• Ostwald ripening \rightarrow Loss of active sites for ORR

-- Thermal stability: morphological

as-deposited NrGO180

annealed NrGO180

-- Thermal stability: d-spacing

NrGO180 (As - 350°C) : ~3.4Å

Y. Jee et al. submitted

Pt needs to have high surface area (i.e. highly porous or nanoparticle structure)

- \rightarrow Significant agglomeration during operation
- \rightarrow Significant reduction in active area
- \rightarrow Needs to maintain high surface area structure

--- Thermal agglomeration of Pt

@ 600 °C

- Suppression of ripening by ultra-thin oxide

-- Suppression of ripening by ultra-thin oxide

CMERCED

- Suppression of ripening by ultra-thin oxide

EIS analysis

Summary

- N-doped graphene as a SOFC cathod
 - showed a great oxygen reaction performance and durability at < 400 °C</p>
 - Still much engineering opportunity (interface w/ current collector; cheaper doping process, enhanced reaction sites, etc.)
- > Oxide nano-coating for metal ripening
 - > Few nm oxide coating suppressed metal ripening
 - > Also enhanced the catalytic activity

Acknowledgement

- Dr. Youngseok Jee
- Andrew H. Moon
- Alireza Karimaghaloo
- Dr. Hidetaka Ishihara, Prof. Vincent C. Tung, UC Merced
- Sanghoon Ji, Prof. Suk-Won Cha, Seoul National Univ.
- Dr. Jin-Woo Han @ NASA Ames
- Dr. Jihwan An and Prof. Fritz Prinz @ Stanford

Thank you.

Min Hwan Lee mlee49@ucmerced.edu