

Perpendicular MTJ stack development for STT MRAM on Endura PVD platform

Mahendra Pakala, Silicon Systems Group, AMAT

Dec 16th, 2014 AVS 2014

*All data in presentation is internal Applied generated data

OUTLINE

- STT MRAM Background
- Perpendicular Magnetic Tunnel Junction Basics
- Perpendicular Magnetic Tunnel Junction Using Endura PVD

Key Drivers for STT MRAM

Scaling challenges of current RAM Latency gap between Storage and RAM

Memory Performance Comparison

□ STT RAM attributes: Endurance, Fast Access & Non-Volatility

STTRAM BIT OPERATION

Switching Current (Writing) vs. Data Retention

□ Low I_{co} at high Δ is key challenge for Magnetic Tunnel Junction (MTJ) stack development (along with high TMR, large pinning and thermal stability of stacks)

STT RAM Technology Options

- Perpendicular MTJ preferred for scalability
- Many new thin films (few Å) and, interfaces to control

Key Enabler: Magnetic Tunnel Junctions (MTJ)

□ In-plane MTJ manufacturability demonstrated in HDD/MRAM (in products since 2007)

Current Industry focus is on Perpendicular MTJ to enable high density arrays

OUTLINE

- STT MRAM Background
- Perpendicular Magnetic Tunnel Junction Basics
- Perpendicular Magnetic Tunnel Junction Using Endura PVD

Magnetic Tunneling Junction (MTJ)

$$\mathsf{TMR\%} = \frac{R_{AP} - R_P}{R_P} \times 100$$

2 spin independent channel conduction – amorphous barrier
Spin filtering for tunneling through MgO crystalline barrier

Growth and Annealing of MgO MTJ

S. Yuasa et al, J. Phys. D: Appl. Phys. 40 (2007) R337–R354

□ Annealing at 300° to 450°C to obtain high TMR%

Anisotropy in Magnetic Films

Anisotropy: Preferred direction/axis of magnetization. Many sources...only 2 shown here

Stray Field Balance in MTJ: SAF

SAF: Synthetic Anti-Ferromagnet

Reduces stray field on storage layer.
Increases pin layer stability

STT MRAM: pMTJ Stack Engineering Summary

□ Sub Å control of film thickness and interface roughness

□ MgO growth condition for crystal texture/quality (low impurity, OH) and anneal

Crystalline texture for magnetic materials

OUTLINE

- STT MRAM Background
- Perpendicular Magnetic Tunnel Junction Basics
- Perpendicular Magnetic Tunnel Junction Using Endura PVD

Perpendicular MTJ Stack Deposition

Endura PVD Platform

Perpendicular MTJ Stack Blanket Film Performance: Transport/Tunneling (CIPT)

High TMR and BEOL Thermal Budget Compatibility for MTJ Stack Dep

Perpendicular MTJ Stack Blanket Film Performance, Magnetics (VSM)

Large pinning strength for SAF and square loop for Free Layer

Patterned pMTJ Performance Metrics

1) Quasi Static Test (measure MTJ resistance as field is scanned),

2) Pulse current measurements

High TMR for fast read

Low Hoff for reliability

Low R_P sigma for yield

High H_c (\propto Hk) for data retention

 $TMR = \frac{R_{AP} - R_P}{R_P} \times 100\%$

MTJ Size Dependence (Patterned): Top Pin

□ High TMR and H_C can be achieved by MTJ stack optimization and etch process tuning. □ 20nm bits with highest TMR of ~ 153% and Hc ~ 850 Oe.

Switching Current (Ic) & Scalability

Top Pin

Summary

- STT MRAM offers good endurance, speed and non-volatility. Hence being considered for embedded, cache and stand alone memory.
- One key challenge for making high density STT MRAM is developing materials with low switching current (I_{co}) at high thermal stability (Δ), with high TMR% & pinning.
- Using Endura PVD system, perpendicular MTJ stacks with performance suitable for dense arrays were demonstrated.
 - Blanket film performance: TMR ~ 200% at RA ~ 12. Pinning > 2kOe.
 - 20nm patterned MTJ: I_{co} of ~ 20uA, Δ > 50, patterned TMR of ~ 153%

Thanks for your attention!

Turning innovations into industries.™

