

Analytical Methods for Characterizing Battery Materials

NCCAVS, 10th Sept 2013 Sanjay Patel

© 2013 Evans Analytical Group

Evans Analytical Group

😑 Materials Characterization 🛛 🌑 Microelectronics Test and Engineering 🛛 🛑 Environmental Fate, Chemistry and Ecotoxicology 👘 CHEMIR

- Founded in 1978
- Leader in advanced surface analysis and materials characterization
- 700 employees
- Locations worldwide

Analytical Techniques in Other Industries

Evans Analytical Group

- Fully Confidential no IP or patent related issues
- Fast turnaround typically 3-5 days
- Access to best available techniques and procedures

Analytical consideration for R&D and manufacturing differ

Research and Development

- Accuracy
- •Lowest detection Limit
- Resolution
- Physical / Chemical Information

Manufacturing / Production Control

- •Repeatability
- •Cost
- •Speed turnaround time
- •Sampling

Choosing the Analytical Method

6

Bubble Chart for Analytical Techniques

EAG

Study of SEI

TEM, cycled cathode particle

Analysis of SEI is essential for understanding electrochemical mechanism which results in loss of cell performance/cycle life.

Characterization of SEI Requires:

- Small spot size to analyze individual particles
- Ability to measure elemental and molecular components
- Shallow information depth (few nms)
- Depth profiling ability

Auger used for imaging LiNiCoMnO cathode particles ~1 micron size particles

- Elemental analysis
- No molecular information

SEM / EDS

Bubble Chart for Analytical Techniques

Depth of Analysis / Information Depth

Lithium Titanium Oxide Anode

- 1. Ion Image can mass select
- **2.** Images recorded as a function of depth

3. Entire mass spectrum recorded
per pixel – allowing any mass to
be imaged or depth profile
generated at any region

TOF-SIMS Mass Selection

Secondary Ion Image

Lithium

Secondary Ion Image Total Counts

Raw Material Control

Variation in material grade from one supplier to another or even batch to batch (from the same supplier), should be monitored to ensure identical performance of manufactured cells.

Understanding Particle Size and Distribution

Cathode

Anode

Efficiency and consistency of the slurry mixing process is evaluated by SEM by checking particle distribution and agglomeration

EXACT Evans Analytical Group

Manufacturing Control of Electrode Materials

Study

- Eight LiFePO₄ batches ready for cell manufacture
- Measure impurities

Samples A and B: expected to be similar

Samples C, D, E and F: expected to be similar and to have higher levels of vanadium

Samples G and H: from two different overseas suppliers

Elements >0.01 at. Wt%

Comparison of GDMS Data

LFP-B LFP-A LFP-H Sample LFP-H has significantly higher levels of Cl Si, Nb and Ti compared to LFP-A and LFP-B. Sr Element LFP-H LFP-A LFP-B Cu Si ٧ 5 10 15 20 25 0 **Element** ND Impurity Level (ppm wt%) Ti 0 200 400 600 800 1000 Impurity Level (ppm wt%)

21

Comparison of GDMS Data

This chart shows higher levels of Mn and Mg in LFP-H compared to LFP-A and LFP-B.

Two cells with very different characteristics – made from similar LiFePO₄ (according to supplier)

- Careful choice of analytical technique is essential for improving product development and good manufacturing control.
- Fast "turn-around" with optimized analytical method results in significant cost savings.
- With continued advances in battery materials, the analytical method requires changes/modification based on the material and information required.

Contact:

Sanjay Patel

480-239-0602

spatel@eag.com

www.eag.com

