

Blanka Magyari-Köpe and Yoshio Nishi Stanford University

Current Students: Liang Zhao, Dan Duncan

Former Students: Dr. Seong-Geon Park (Samsung), Dr. Hyung-Dong Lee (Hynix)

Collaborators: Prof. Kenji Shiraishi, Prof. Katsumasa Kamiya, MoonYoung Yang (Tsukuba & Nagoya University, Kanagawa Institute of Technology)

RRAM as Emerging Memory

H. Akinaga, AIST, Maturity Evaluation for Selected Emerging Research Memory Technologies, 2010.

Metal Oxide M-I-M Memory (RRAM)

Advantages:

- Low programming voltage (< 3V)
- Material set compatible with conventional semiconductor processing (e.g Ni, Hf, Al, Ti, Ta,...)
- Low temperature processing (BEOL-compatible)
- High speed and density
- Structural simplicity
- Key issues to be resolved:
 - Physics of the resistive switching
 - Device scaling properties
 - Device uniformity
 - Endurance and retention

RRAM Materials Choices

The Periodic Table of the Elements

1													2				
Н		corresponding binary oxide that												Не			
1.00794														4.003			
3	4	exhibits bistable resistance switching									5	6	7	8	9	10	
Li	Be											B	С	Ν	0	F	Ne
Lithium 6.941	Beryllium 9.012182		Boron Carbon Nitrogen Oxygen Fluorine Neon 10.811 12.0107 14.00674 15.9994 18.9984032 20.179													Neon 20,1797	
11	12	metal that is used for electrode												17	18		
Na	Mσ											AI	Si	Р	S	CI	Ar
Sodium	Magnesium	Silicon Phosphorus Sulfur Chlorine 26.981538 28.0855 30.973761 32.066 35.4527 3										Aluminum	Silicon	Phosphorus	Sulfur	Chlorine	Argon
22.989770	24.3050											39.948					
19	20	21	22	25	24	25	20	27	20	29	50	51	52	33	54	35	30
K	Ca	Sc	Ti	V	Cr	Mn	Fe	Со	Ni	Cu	Zn	Ga	Ge	As	Se	Br	Kr
Potassium 39.0983	Calcium 40.078	Scandium 44.955910	47.867	Vanadium 50.9415	Chromium 51.9961	Manganese 54.938049	55.845	Cobalt 58.933200	Nickei 58.6934	Copper 63.546	Zine 65.39	Gallium 69.723	Germanium 72.61	Arsenic 74.92160	Selenium 78.96	Bromine 79.904	Krypton 83.80
37	38	39	40	41	42	43	44	45	46	47	48	49	50	51	52	53	54
Rb	Sr	Y	Zr	Nb	Mo	Tc	Ru	Rh	Pd	Ag	Cd	In	Sn	Sb	Те	I	Xe
Rubidium 85.4678	Strontium 87.62	Yttrium 88 90585	Zireonium 91.224	Niobium 92 90638	Molybdenum 95-94	Technetium (98)	Ruthenium	Rhodium 102 90550	Palladium 106.42	Silver 107 8682	Cadmium 112 411	Indium 114 818	Tin 118-710	Antimony 121 760	Tellurium 127.60	Iodine 126 90447	Xenon 131 29
55	56	57	72	73	74	75	76	77	78	79	80	81	82	83	84	85	86
Cs	Ba	La	Hf	Та	W	Re	Os	Ir	Pt	Au	Hg	TI	Pb	Bi	Ро	At	Rn
Cesium	Barium	Lanthanum	Hafnium	Tantalum	Tungsten	Rhenium	Osmium	Iridium	Platinum	Gold	Mercury	Thallium	Lead	Bismuth	Polonium	Astatine	Radon
132.90545 97	00	138.9055	1/8.49	105	183.84	186.207	190.23	192.217	195.078	1111	112	204.3833	114	208.98038	(209)	(210)	(222)
0/	00 D	09	104 DC	105	100	107 D	108	109	110	111	112	115	114				
Fr	Ra	Ac	Rf	Db	Sg	Bh	HS	Mt									
(223)	(226)	(227)	(261)	(262)	(263)	(262)	(265)	(266)	(269)	(272)	(277)						

58	59	60	61	62	63	64	65	66	67	68	69	70	71
Ce	Pr	Nd	Pm	Sm	Eu	Gd	Tb	Dy	Ho	Er	Tm	Yb	Lu
Cerium	Praseodymium	Neodymium	Promethium	Samarium	Europium	Gadelinium	Terbium	Dysprosium	Holmium	Erbium	Thulium	Ytterbium	Lutetium
140.116	140.90765	144.24	(145)	150.36	151.964	157.25	158.92534	162.50	164.93032	167.26	168.93421	173.04	174.967
90	91	92	93	94	95	96	97	98	99	100	101	102	103
Th	Pa	U	Np	Pu	Am	Cm	Bk	Cf	Es	Fm	Md	No	Lr
Thorium	Protactinium	Uranium	Neptunium	Plutonium	Americium	Curium	Berkelium	Californium	Einsteinium	Fermium	Mendelevium	Nobelium	Lawrencium
232.0381	231.03588	238.0289	(237)	(244)	(243)	(247)	(247)	(251)	(252)	(257)	(258)	(259)	(262)

Unipolar and/or Bipolar Switching

Models for Forming and Resistive Switching

S. Yu, B. Lee, H.-S. P. Wong, "Metal Oxide Memory," in J. Wu, W. Han, H.-C. Kim, A. Janotti eds, "Functional Metal Oxide Nanostructures," Springer 2011.

Theoretical Methods and Analysis

First principles calculations: density functional theory

Electrons: Schrödinger equation: $H\Psi = E\Psi$

$$\hat{H} = \sum_{i=1}^{N} \left(-\sum_{\mathbf{R}} \frac{Ze^2}{|\mathbf{r_i} - \mathbf{R}|} - \frac{\hbar^2 \nabla_i^2}{2m} \right) + \frac{1}{2} \sum_{i \neq j} \frac{e^2}{|\mathbf{r_i} - \mathbf{r_j}|}$$

Ions: Geometry optimization

Self-consistent calculation: total energy minimization techniques

Beyond LDA, GGA approximations:

=> on-site Coulomb corrections by introducing Hubbard U in the Hamiltonian

Electronic Structure: VASP

Outline

ON-state Conduction and Filament Formation: TiO₂, NiO, HfO₂, Al₂O₃

The Role of Dopants in Switching: TiO₂, HfO₂

Charge Trapping: TiO₂, HfO₂, Al₂O₃

Thermodynamics: Oxygen Diffusion in/out of the Filament: TiO₂ Electrode/Oxide Interfaces and Electronic Transport

Multilayer structures

Summary

Conductive Filaments of O Vacancies (I)

HRTEM images

D.-H. Kwon, Nat. Nanotech. 2010

5~10 nm diameter Magnéli phase of conical shape observed between the electrodes - electrical conduction path.

Conductive Filaments of O Vacancies (II)

Vacancy ordering in TiO₂

Partial charge density

K. Kamiya et al. APL 2012; S.G. Park et al. EDL 2011; Magyari-Kope et al. Nanotechnology 2011; Magyari-Kope et al. J. Mat. Sci. 2012, Zhao et al. APL 2013

TiO₂: Stability of Multi Vacancy Configurations

 $E(TiO_{2-x})$: The total energy of a supercell containing oxygen vacancies $E(TiO_2)$: The total energy of a perfect TiO_2 in the same size of supercell $E(O_2)$: The energy of oxygen molecule

o vacancy

B. Magyari-Köpe, S. G. Park, H.D. Lee, Y. Nishi, J. Mater. Sci., 2012.

B. Magyari-Köpe, M. Tendulkar, S.G. Park, H.D. Lee, Y. Nishi, Nanotechn. 22, 254029, 2011. S.G. Park, B. Magyari-Köpe, Y. Nishi, EDL 32, 197, 2011.

TiN/HfO₂: Vacancy Filaments

• Monovacancy chain of 8 V_o's

Blanka Magyari-Köpe and Yoshio Nishi

D. Duncan et al., MRS 2012 12

NiO: V_o Filament Configuration

Conductive Filaments in TiO₂, HfO₂ and Al₂O₃

S. Park et al., EDL 2011 K. Kamiya et al., APL 2013

K. Kamiya et al., PRB 2013

M. Yang et al., JJAP 2013

Outline

ON-state Conduction and Filament Formation: TiO₂, NiO, HfO₂, Al₂O₃

The Role of Dopants in Switching: TiO₂, HfO₂

Charge Trapping: TiO₂, HfO₂, Al₂O₃

Thermodynamics: Oxygen Diffusion in/out of the Filament: TiO₂ Electrode/Oxide Interfaces and Electronic Transport

Multilayer structures

Summary

Transition Metal Doping Effects in TiO₂

- Incorporation of Ni, Cu or Sr in a TiO₂ substrate reduces the formation energy of an oxygen vacancy next to the dopant.
- Dopant engineering: lowering the forming voltage and switching energy consumptions.

L. Zhao, S.G. Park, B. Magyari-Köpe, and Y. Nishi, SSDM 2012, APL 2013

Choosing the dopants?

- Conductive filament modeled as oxygen vacancy chain
- Systems with different kinds of dopants are studied

Valence electron number: a key factor in classifying the doping effects

TiO₂: P-type and N-type Transition Metal Doping

$$E_{form} = E_{tot,dopant,V_O} - E_{tot,dopant} + n_{V_O} \mu_O$$

L. Zhao, S.G. Park, B. Magyari-Köpe, and Y. Nishi, APL 2013.

TiO₂: Density of States of Dopants + V₀

L. Zhao, S.G. Park, B. Magyari-Köpe, and Y. Nishi, APL 2013.

TiO₂: Band Structure Effects of Doping

Ti like dopants

N-type dopants

P-type dopants

L. Zhao, S.G. Park, B. Magyari-Köpe, and Y. Nishi, APL 2013.

HfO₂: Electron Density of States of V₀ + Dopant

N doping - K. Xiong, J. Robertson & S. J. Clark, JAP, 99, 044105 2006

F doping - K. Tse & J. Robertson, APL 89, 142914 2006

L. Zhao, S. Ryu, A. Hazeghi, D. Duncan, B. Magyari-Köpe, and Y. Nishi, VLSI 2013. Blanka Magyari-Köpe and Yoshio Nishi

HfO₂: Vacancy Formation Energy Dopant + Filament

L. Zhao, S. Ryu, A. Hazeghi, D. Duncan, B. Magyari-Köpe, and Y. Nishi, VLSI 2013.

HfO₂: Partial Charge Density Dopant + Filament

Isosurface: 0.1 e/Å³.

L. Zhao, S. Ryu, A. Hazeghi, D. Duncan, B. Magyari-Köpe, and Y. Nishi, VLSI 2013.

HfO₂ Doping: Experiments and Theory

1E-3

L. Zhao, S. Ryu, A. Hazeghi, D. Duncan, B. Magyari-Köpe, and Y. Nishi, VLSI 2013.

Outline

ON-state Conduction and Filament Formation: TiO₂, NiO, HfO₂, Al₂O₃

The Role of Dopants in Switching: TiO₂, HfO₂

Charge Trapping: TiO₂, HfO₂, Al₂O₃

Thermodynamics: Oxygen Diffusion in/out of the Filament: TiO₂ Electrode/Oxide Interfaces and Electronic Transport

Multilayer structures

Summary

Vacancy Diffusion Effect – Filament Rupture

Strongly localized energy levels

• Significantly decreased electron conduction \rightarrow increased resistivity.

Charged Defect Formation Energies TiO₂

"ON" - LRS state

"OFF" – HRS state

B. Magyari-Köpe et al., J. Mater. Sci., 47, 7498, 2012.

Charge Trapping – Filament Instability

K.Kamiya, M.Y. Yang, S.G. Park, B. Magyari-Köpe, Y. Nishi, M. Niwa, and K. Shiraishi, APL 2012

V₀ Cohesion-Isolation Transition

Cohesion/Rupture of Conductive Filaments in TiO₂, HfO₂, and Al₂O₃

 $E_C(q) = \frac{1}{n} \Big[\{ E(V_O^q - \text{chain}) + (n-1) \times E(\text{bulk}) \} - n \times E(V_O^q - \text{isolated}) \Big]$

All three materials prefer to form V_0 -filament in q=0 and q=+1 charge states.

K.Kamiya, M.Y. Yang, S.G. Park, B. Magyari-Köpe, Y. Nishi, M. Niwa, and K. Shiraishi, APL 2012

M.Y. Yang, K.Kamiya , B. Magyari-Köpe, Y. Nishi, H. Momida, T. Ohno, M. Niwa, and K. Shiraishi, SSDM 2012, JJAP 2013

Outline

ON-state Conduction and Filament Formation: TiO₂, NiO, HfO₂, Al₂O₃

The Role of Dopants in Switching: TiO₂, HfO₂

Charge Trapping: TiO₂, HfO₂, Al₂O₃

Thermodynamics: Oxygen Diffusion in/out of the Filament: TiO₂

Electrode/Oxide Interfaces and Electronic Transport

Multilayer structures

Summary

K. Kamiya, M. Y. Yang, B. Magyari-Köpe, M. Niwa, Y. Nishi, and K. Shiraishi, IEDM 2012.

Oxygen Vacancy Diffusion Barrier in/out of the Filament

The O diffusion during the ON-OFF switching process is further enhanced by the applied electric field.

Outline

ON-state Conduction and Filament Formation: TiO₂, NiO, HfO₂, Al₂O₃

The Role of Dopants in Switching: TiO₂, HfO₂

Charge Trapping: TiO₂, HfO₂, Al₂O₃

Thermodynamics: Oxygen Diffusion in/out of the Filament: TiO₂

Electrode/Oxide Interfaces and Electronic Transport

Multilayer structures

Summary

Electronic Transport TiN/TiO₂/TiN (II)

Electron transmission at finite biases: DFT-NEGF (ATK, QuantumWise, energy tolerance = 1e-6 eV, 8x8x1 k-points

Trap-assisted tunneling effects: modeled by isolated vacancies with various hopping distances (derived from nVo)

Electronic Transport TiN/TiO₂/TiN (II)

NEGF calculations (QuantumWise ATK)

3.0nm oxide: perfect TiO_2 and isolated vacancies exhibit non-linear I-V, while both single and double vacancy filaments are metallic.

Outline

ON-state Conduction and Filament Formation: TiO₂, NiO, HfO₂, Al₂O₃

The Role of Dopants in Switching: TiO₂, HfO₂

Charge Trapping: TiO₂, HfO₂, Al₂O₃

Thermodynamics: Oxygen Diffusion in/out of the Filament: TiO₂ Electrode/Oxide Interfaces and Electronic Transport

Multilayer structures

Summary

ReRAM stack structure with Al₂O₃ layer

Inserting Al₂O₃ layer

- From one- or two-layer stack structure to three-layer involving Al₂O₃ thin layer
- Increased ON/OFF ratio
- Goal: Lower the operation current and improve thermal stability for the stable switching operation.

Al₂O₃: Formation of O Vacancy Filament

Cohesive energy

$$E_C(q) = \frac{1}{n} \Big[\{ E(V_O^q - \text{chain}) + (n-1) \times E(\text{bulk}) \} - n \times E(V_O^q - \text{isolated}) \Big] \quad (n = 8)$$

K. Kamiya, APL 2012; IEDM 2012, PRB 2013, TED 2013

- An isolated V_o tends to become cohesive when q = 0 and 1+.
- The cohesive energy is about 0.4 eV for q=0/1+ charge states

ON/OFF switching in a multilayer structure

One- or Two-layer structures

Three-layer structure

- Al₂O₃ O interstitial former.
- The physical mechanism of Al₂O₃ inducing high ON/OFF ratio?

Model of O Vacancy Filament growth (I)

K. Kamiya et al., IEDM 2012; TED 2013 M Yang et al., SSDM 2012, JJAP 2013

 $AI_2O_3 + \frac{1}{2}(Hf) \longrightarrow AI_2O_3 (V_0) + \frac{1}{2}(HfO_2)$

 V_0 formation energy in Al_2O_3 : 8 eV

 $E_f = \{E(V_O) - E(\text{bulk})\} + \mu_O$

Heat of formation of $HfO_2 : -5.8 \text{ eV}$ (per one O atom) $Hf + O_2 \rightarrow HfO_2$

• Formation of V_o costs 2.2 eV energy loss even when Al₂O₃ is in contact with Hf (Hf-rich V_o source).

- Fermi level of TiN is almost the same as the V₀ level of Al₂O₃ and about 4 eV higher than VB of Al₂O₃.
- Fermi level of Hf is roughly 1 eV higher than that of TiN.

Model of O Vacancy Filament growth (II)

43

Model of O Vacancy Filament growth (III)

44

Summary

- A filamentary arrangement of oxygen vacancies may account for the higher conductivity observed in oxygen deficient TiO₂, NiO, HfO₂ and Al₂O₃.
- The filament rupture process during the ON-OFF switching can be further enhanced/blocked by dopants diffusion into the vacancy sites – and the process is strongly enhanced by the applied electric field.
- Vacancies at the electrode/oxide interfaces influence the conductivity and ionic transport. Based on NEGF calculations: the electron transport change from a metallic type through the filaments to an isolated trap assisted model bears a 10⁴ change in the ON/OFF ratio.
- Multilayer structures control of the oxygen chemical potential and electric field is required

