

Stanford University

Methodologies to Study the Scalability and Reliability Physics of Phase-Change Memory

<u>Rakesh Jeyasingh</u>¹, Scott Fong¹, Chiyui Ahn¹, SangBum Kim¹, Jiale Liang¹, Marissa Caldwell¹ Zijian Li², Jaeho Lee², Elah Bozorg-Grayeli², Mehdi Asheghi², Kenneth E. Goodson², Delia Milliron³ and H. –S. Philip Wong¹

¹Department of Electrical Engineering and ²Department of Mechanical Engineering, Stanford University, Stanford, CA 94305 ³Molecular Foundry, Lawrence Berkeley National Labs

A

Outline

- Phase Change Memory (PCM) Basics
- Phase Change Material Scaling using GeTe Nanoparticles
- 1D Thickness Scaling Studies using Additional Top Electrode (ATE) Devices
- Programming Current (Electrode) Scaling using CNTs
- Micro Thermal Stage (MTS) An On-Chip Heater and Thermometer to Study PCM Reliability Physics
- Conclusion

ß

Outline

Phase Change Memory (PCM) Basics

- Phase Change Material Scaling using GeTe Nanoparticles
- 1D Thickness Scaling Studies using Additional Top Electrode (ATE) Devices
- Programming Current (Electrode) Scaling using CNTs
- Micro Thermal Stage (MTS) An On-Chip Heater and Thermometer to Study PCM Physics
- Conclusion

Phase Change Materials

Phase-change materials:

- Ge₂Sb₂Te₅ (GST)
- AIST (AgInSbTe)
- •GeSb, Sb₂Te, GeTe...

Phase Change Materials

- Sulphur (S), Selenium (Se) and Tellurium (Te) group 16 (VIA), are called chalcogens
- Chalcogenides group 16 + group 13-15 namely Arsenic (As), Germanium (Ge), Antimony (Sb), Phosphorus (P) etc.

Most reports in the literature uses the Ge₂Sb₂Te₅ alloy (GST)

Phase Change Memory

- Amorphization (RESET): Melt and quench (T>T_{Melt})
- Crystallization (SET): Anneal (T>T_{crvs})

PCM Current-Voltage Characteristics

A. Pirovano et al., IEEE Trans. Electron Devices, vol. 51, no. 5, pp. 714–719, May 2004.

Phase Change Memory

- Resistance change achieved by controlling the size of the amorphous region

History of Phase Change Memory

N. Carlisle, "The Ovshinsky invention," Science & Mechanics, Feb. 1970 R. G. Neale, D. L. Nelson and G. E. Moore, "Nonvolatile and Reprogrammable, the Read Mostly Memory is Here," Electronics, Sep. 1970

M. Kanga et al., IEDM 2011

F ≈ 2mm 1 bit F ≈ 350µm 256 bit

F ≈ 20nm 8 Gbit

PCM Status

- 90 nm, 128Mb NOR replacement on market
- 45 nm, 1Gb (IEDM 09, ISSCC 10), 58 nm 1Gb (ISSCC 11)
- 20 nm cell (IEDM 11), 42 nm half pitch 1Gb chip (IEDM 11), 20 nm 8Gb chip (ISSCC 12)
- Will keep researchers busy for a long time
 - Physics of threshold switching
 - Threshold switching voltage and resistance drift
 - Device size scaling
 - Partial set and reset (multi-bit operation)
 - Thermal engineering (programming energy reduction)
 - Materials engineering for target applications (speed, temperature, reliability)
 - Reliability (thermal expansion, alloy composition)

PCM Status

- 90 nm, 128Mb NOR replacement on market
- 45 nm, 1Gb (IEDM 09, ISSCC 10), 58 nm 1Gb (ISSCC 11)
- 20 nm cell (IEDM 11), 42 nm half pitch 1Gb chip (IEDM 11), 20 nm 8Gb chip (ISSCC 12)
- Will keep researchers busy for a long time
 - Physics of threshold switching
 - Threshold switching voltage and resistance drift
 - Device size scaling
 - Partial set and reset (multi-bit operation)
 - Thermal engineering (programming energy reduction)
 - Materials engineering for target applications (speed, temperature, reliability)
 - Reliability (thermal expansion, alloy composition)

Outline

- Phase Change Memory (PCM) Basics
- Phase Change Material Scaling using GeTe Nanoparticles
- 1D Thickness Scaling Studies using Additional Top Electrode (ATE) Devices
- Programming Current (Electrode) Scaling using CNTs
- Micro Thermal Stage (MTS) An On-Chip Heater and Thermometer to Study PCM Physics
- Conclusion

Synthesis of Amorphous GeTe Nanoparticles

Rakesh Jeyasingh

Size Dependence of Crystallization Temperature

 Higher crystallization temperature ↔ Greater amorphous phase stability ↔ Data Retention

Collected at Brookhaven National Laboratory by Simone Raoux (IBM) and completed with Delia Milliron at the Molecular Foundry.

Outline

- Phase Change Memory (PCM) Basics
- Phase Change Material Scaling using GeTe Nanoparticles
- 1D Thickness Scaling Studies using Additional Top Electrode (ATE) Devices
- Programming Current (Electrode) Scaling using CNTs
- Micro Thermal Stage (MTS) An On-Chip Heater and Thermometer to Study PCM Physics
- Conclusion

A

Additional Top Electrode (ATE) Structure

ATE layer acts as an electrical conductor

Confines probed amorphous region to a known thickness

Thickness Dependence of V_{th}

- V_{th} scales linearly with GST1 thickness
 - Both E_{th} (41mV/nm) and V_{th0} match well with previously reported values

S.Kim et al., IEEE Trans. Elec. Dev., vol.58, no.5, 2011

Stanford University

Direct Measurement of Trap Spacing using ATE Devices

R. Jeyasingh et al., *IEEE Trans. Elec. Dev.*, vol. 58, no. 12, 2011

Thickness (nm)	Average Trap Spacing (nm)	Average Number of Hoppings	Trap Density (cm ⁻³)
8	5.3	1.5	6.7 x 10 ¹⁸
20	6	3.3	4.6 x 10 ¹⁸
30	6.8	4.4	3.2 x 10 ¹⁸
40	7.6	5.3	2.3 x 10 ¹⁸

Trap spacing changes with thickness and reset voltage

Outline

- Phase Change Memory (PCM) Basics
- Phase Change Material Scaling using GeTe Nanoparticles
- 1D Thickness Scaling Studies using Additional Top Electrode (ATE) Devices

Programming Current (Electrode) Scaling using CNTs

- Micro Thermal Stage (MTS) An On-Chip Heater and Thermometer to Study PCM Physics
- Conclusion

Phase Change Memory Scaling to ~1µA Prog. Current

J. Liang et al., Symp. VLSI Tech., paper 5B-4, 2011 (best paper award); T-ED p. 1155 (2012)

Phase Change Memory w/ Carbon Nanotube Electrode

PCM with CNT Electrode

J. Liang et al., Symp. VLSI Tech. 2011

A

Phase Change Memory Scaling to 1.8 nm Node

J. Liang et al., Symp. VLSI Tech., paper 5B-4, 2011 (best paper award); T-ED p. 1155 (2012)

Scaling Studies - Summary

- Scaling is a complex question
- GeTe Nanoparticles offer a route to investigate size dependent properties
 - Ability to solution process PCM opens options for device geometries
- ATE devices allow scaling studies in a more practical device design
 - Study threshold voltage scaling
 - Trap spacings can be directly measured
 - Aids in developing accurate models for sub-threshold conduction
- CNTs have been shown to be an effective way to probe electrode scaling
 - Extremely low RESET current and programming energy

Scaling of Phase Change Memory – Strong prospects of scaling down to few nm both at the materials and the device level

Outline

- Phase Change Memory (PCM) Basics
- Phase Change Material Scaling using GeTe Nanoparticles
- 1D Thickness Scaling Studies using Additional Top Electrode (ATE) Devices
- Programming Current (Electrode) Scaling using CNTs
- Micro Thermal Stage (MTS) An On-Chip Heater and Thermometer to Study PCM Physics
- Conclusion

A

Memory Loss Mechanism in PCM

- **1.** Spontaneous crystallization
- Crystalline phase is more stable.

- 2. Multi-bit cell & drift
- Resistance drift
- → Smaller margin

D.-H. Kang et al., Symp. VLSI. Tech., 2008.

Temperature Dependence of Reliability Issues

Spontaneous crystallization

- Higher temperature
- → Faster crystallization.

Drift (R_{RESET} + V_{th})

Higher temperature

→ Faster drift

^{86,} p.1942, 2009.

Thermal (program) Disturbance in PCM

- PCM uses heat for programming.
- →Thermal disturbance in PCM.

 Thermal disturbance makes reliability issues worse – especially for scaled devices

A.Pirovano et al., IEDM, 2003.

Micro-thermal stage (MTS)

An external heater integrated with the PCM cell

- Lateral PCM cell + Pt heater on top
- Thermal time constant: ~1.5 μs

S. Kim et al., IEEE Tran. Elec. Dev. Vol. 58, pp. 584, 2011

Temperature calibration on the external heater

 $\Delta T_{heater} \propto Power$

Pt bridge: Heater + thermometer

S

Need for a Micro – Thermal Stage (MTS)

Enables temperature measurements closer to real device operating conditions
MTS – allows fast measurements of drift and crystallization on real PCM devices
Measurements on technologically relevant melt-quenched amorphous phase
Study the effect of electronic and thermal effects in isolation

R_{RESET} Drift Measurement

S. Kim et al., IEEE Tran. Elec. Dev. Vol. 58, pp. 584, 2011

31

R_{RESET} Drift Impacted by Thermal Disturbances

Crystallization Time (t_{crys}) Vs Temperature (T)

- Current MTS enables t_{crys} measurement down to ~100µs.
- Arrhenius behavior with constant activation energy (*E_A*)

Crystallization Time (t_{crys}) with Thermal Disturbance

• Constant shift in $log(t_{crys})$ \rightarrow The t_{crys} ratio is constant.

S. Kim et al., IRPS 2010

Effects of Temperature on PCM Reliability - Summary

- Spontaneous crystallization and Resistance drift major reliability issues of PCM
- Significantly impacted by short thermal disturbances variability in the retention and drift behavior
- Use of Micro Thermal Stage fast heater and thermometer to study the reliability physics in short time scales

Non-Volatile Memory Technology Research Initiative (NMTRI) at Stanford University

Technical Collaborators on Memory

工業技術研究院

Industrial Technology

Research Institute

Methodologies to Study Scalability and Physics of PCM

Understanding Physics & Reliability

Device Scaling

Material Scaling

