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Outline 

§ Phase Change Memory (PCM) Basics 

§ Phase Change Material Scaling using GeTe 
Nanoparticles 

§ 1D Thickness Scaling Studies using Additional Top 
Electrode (ATE) Devices 

§ Programming Current (Electrode) Scaling using CNTs 

§ Micro Thermal Stage (MTS) - An On-Chip Heater and 
Thermometer to Study PCM Reliability Physics 

§ Conclusion 
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Phase Change Materials 

Crystalline Amorphous 
High 

Resistance 
Low 

Resistance 

Annealing 

Melt-quenched 

Phase-change materials: 

§ Ge2Sb2Te5 (GST) 

§ AIST (AgInSbTe) 

§ GeSb, Sb2Te, GeTe… 
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Phase Change Materials 
§  Sulphur (S), Selenium (Se) and Tellurium (Te) - group 16 (VIA), 

are called chalcogens 
§  Chalcogenides - group 16 +  group 13-15 namely Arsenic (As), 

Germanium (Ge), Antimony (Sb), Phosphorus (P) etc.  

Most reports in the literature uses the Ge2Sb2Te5 alloy (GST) 
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Phase Change Memory 

§ Amorphization (RESET): Melt and quench (T>TMelt) 

§ Crystallization (SET): Anneal (T>Tcrys) 
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PCM Current-Voltage Characteristics 

A. Pirovano et al., IEEE Trans. Electron Devices, vol. 51, no. 5, pp. 714–719, May 2004. 
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Phase Change Memory 

poly c-GST poly c-GSTpoly c-GST

amorphousamorphous

SiO2 SiO2 SiO2TiN TiN TiN

TiNTiNTiN
fully set state partially reset state fully reset state

§ Resistance change achieved by controlling the 
size of the amorphous region 

§ Amorphous volume ∝ Programming power 
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History of Phase Change Memory 

N. Carlisle, “The 
Ovshinsky invention,” 
Science & Mechanics, 

Feb. 1970 

R. G. Neale, D. L. Nelson               
and G. E. Moore, 

“Nonvolatile and Reprogrammable, 
the Read Mostly Memory is Here,” 

Electronics, Sep. 1970 

M. Kanga et al., IEDM 2011 

F ≈ 2mm 
1 bit 

F ≈ 350μm 
256 bit 

F ≈ 20nm 
8 Gbit 
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PCM Status 
§  90 nm, 128Mb NOR replacement on market 
§  45 nm, 1Gb (IEDM 09, ISSCC 10), 58 nm 1Gb (ISSCC 11) 
§  20 nm cell (IEDM 11), 42 nm half pitch 1Gb chip (IEDM 

11), 20 nm 8Gb chip (ISSCC 12) 
§ Will keep researchers busy for a long time 

– Physics of threshold switching 
–  Threshold switching voltage and resistance drift 
– Device size scaling 
– Partial set and reset (multi-bit operation) 
–  Thermal engineering (programming energy reduction) 
– Materials engineering for target applications (speed, 

temperature, reliability) 
– Reliability (thermal expansion, alloy composition) 
– … 
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Synthesis of Amorphous GeTe Nanoparticles 

Te precursor 

Ge precursor 
Ligand 
Solvent 

Caldwell, M. et al.  J. Mater. Chem. 20. (2010) 1285. 
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Work completed with Delia Milliron at the Molecular Foundry. 
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Size Dependence of Crystallization Temperature  

Bulk Tcryst 

Collected at Brookhaven National Laboratory by Simone Raoux 
(IBM) and completed with Delia Milliron at the Molecular Foundry. 

3.4nm 

2.6nm 

1.8nm 

bulk Tcryst 

§ Higher crystallization 
temperature  ↔ Greater 
amorphous phase stability ↔ 
Data Retention  
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Additional Top Electrode (ATE) Structure 

§ ATE layer acts as an electrical 
conductor 
– Confines probed amorphous 

region to a known thickness 
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Thickness Dependence of Vth  

§  Vth scales linearly with GST1 thickness 
–  Both Eth (41mV/nm) and Vth0 match well with previously reported values 

S.Kim et al., IEEE Trans. Elec. Dev., vol.58, no.5, 2011 
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Direct Measurement of Trap Spacing using ATE 
Devices 

Trap spacing changes with thickness and reset voltage 

Average num
ber of  hoppings 

STS =  

€ 

∂ log I
∂VA

 =

€ 

q
2kT

Δz
ua

    

R. Jeyasingh et al., IEEE Trans. Elec. Dev., 
vol. 58, no. 12, 2011 

Thickness 
(nm) 

Average Trap 
Spacing (nm) 

Average 
Number of 
Hoppings 

Trap 
Density 
(cm-3) 

8 5.3 1.5 6.7 x 1018 

20 6 3.3 4.6 x 1018 

30 6.8 4.4 3.2 x 1018 

40 7.6 5.3 2.3 x 1018 
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Phase Change Memory Scaling to ~1µA Prog. Current 
Reset current: 1.4 µA, 

energy: 210 fJ/bit 

J. Liang et al., Symp. VLSI Tech., paper 5B-4, 2011 (best paper award); T-ED p. 1155 (2012) 
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Phase Change Memory w/ Carbon Nanotube Electrode 

CNT Growth and transfer 
on SiO2/Si substrate

Pd metal pad evaporation 
and O2 plasma etch to 
remove unwanted CNTs

Pt/Ti metal pad evaporation 
and Al2O3 passivation10nm GST deposition

CNTCNT
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PCM with CNT Electrode 
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100X lower than state-of-the-art 

J. Liang et al., Symp. VLSI Tech. 2011 
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Phase Change Memory Scaling to 1.8 nm Node 
Reset current: 1.4 µA, 

energy: 210 fJ/bit 
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J. Liang et al., Symp. VLSI Tech., paper 5B-4, 2011 (best paper award); T-ED p. 1155 (2012) 

Reset current: 1.4 µA, 
Energy: 210 fJ/bit 
→100X lower than state-of-
the-art 
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Scaling Studies - Summary 

§  Scaling is a complex question 

§  GeTe Nanoparticles offer a route to investigate size dependent properties 
–  Ability to solution process PCM opens options for device geometries 

§  ATE devices allow scaling studies in a more practical device design 
–  Study threshold voltage scaling 

–  Trap spacings can be directly measured 

–  Aids in developing accurate models for sub-threshold conduction 

§  CNTs have been shown to be an effective way to probe electrode scaling  
–  Extremely low RESET current and programming energy  

Scaling of Phase Change Memory – Strong prospects of scaling 
down to few nm both at the materials and the device level 
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§  Crystalline phase is more 
stable. 

En
er
gy EA

Memory Loss Mechanism in PCM 

1. Spontaneous crystallization 2. Multi-bit cell & drift 
§  Resistance drift 

à Smaller margin 

D.-H. Kang et al., Symp. VLSI. Tech., 2008. 

Spontaneous 
crystallization 
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Temperature Dependence of Reliability Issues 

Spontaneous crystallization 
§  Higher temperature 

à Faster crystallization. 

Drift (RRESET + Vth) 
§  Higher temperature 

à Faster drift 

A. Pirovano et al., IEDM, 2003. 
D. Ielmini et al., Microelectronic Engineering, v.
86, p.1942, 2009. 
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Thermal (program) Disturbance in PCM 

§ PCM uses heat for 
programming. 

à Thermal disturbance in PCM. 

§ Thermal disturbance makes 
reliability issues worse – 
especially for scaled devices 

Thermal 
Disturbance 

A.Pirovano et al., IEDM, 2003. 

Selected 
cell 

Unselected 
cell 
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Micro-thermal stage (MTS) 

An external heater integrated 
with the PCM cell 

§   Lateral PCM cell + Pt heater on top 

§  Thermal time constant: ~1.5 µs  

Temperature calibration on the 
external heater 
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§  Pt bridge: Heater + thermometer  
S. Kim et al., IEEE Tran. Elec. Dev. Vol. 58, pp. 584, 2011 
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Need for a Micro – Thermal Stage (MTS) 

§  Enables temperature measurements closer to real device operating conditions 
§ MTS – allows  fast measurements of drift and crystallization on real PCM devices 
§ Measurements on technologically relevant melt-quenched amorphous  phase 
§ Study the effect of electronic and thermal effects in isolation 
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RRESET Drift Measurement 

§  Faster drift at higher TA. 

§  3 times larger drift coefficient 
between 100 µs and 1 ms at 65 °C 
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S. Kim et al., IEEE Tran. Elec. Dev. Vol. 58, pp. 584, 2011 
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RRESET Drift Impacted by Thermal Disturbances 

§ Important features 
– A: ~25% variation on resistance. 
– B: Drift is faster 
– C: Drift is slower 
– D: No change (>100ms)  
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Crystallization Time (tcrys) Vs Temperature (T) 

§  Current MTS enables tcrys measurement down to ~100µs. 

§  Arrhenius behavior with constant activation energy (EA) 

RESET

PCM
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heater
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A : Delay for read
B : Delay for annealing

read
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τthermal
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6 orders 
in time 
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Crystallization Time (tcrys) with Thermal Disturbance 

§  Constant shift in log(tcrys) 
     à The tcrys ratio is constant. 
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S. Kim et al., IRPS 2010 
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Effects of Temperature on PCM Reliability - Summary 

§ Spontaneous crystallization and Resistance drift – major 
reliability issues of PCM 

§ Significantly impacted by short thermal disturbances – 
variability in the retention and drift behavior 

§ Use of Micro Thermal Stage – fast heater and thermometer  
to study the reliability physics in short time scales 
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Non-Volatile Memory Technology Research 
Initiative (NMTRI) at Stanford University 
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Technical Collaborators on Memory 
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