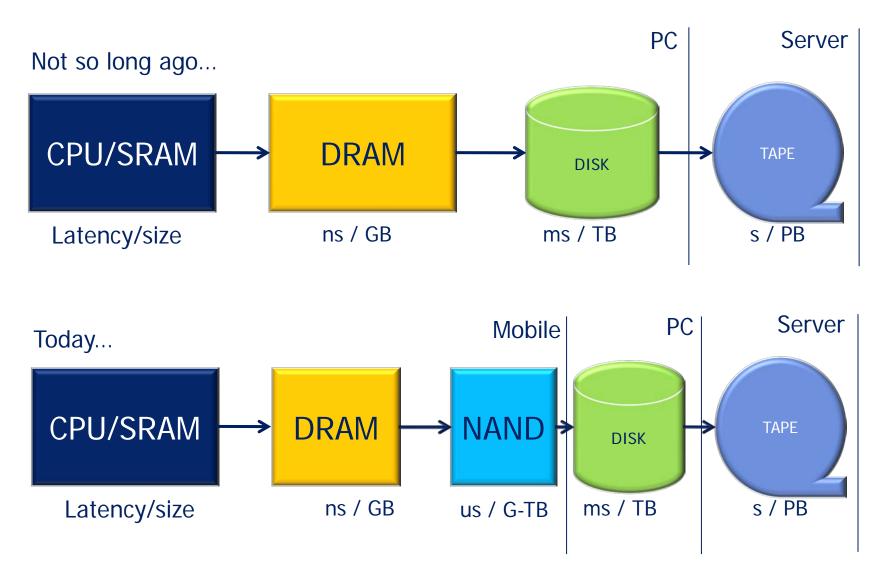
Non-Volatile Memory Technology: Directions Beyond Floating Gate Devices

Bob Gleixner and Chandra Mouli

Micron Technology

©2013 Micron Technology, Inc. All rights reserved. Products are warranted only to meet Micron's production data sheet specifications. Information, products, and/or specifications are subject to change without notice. All information is provided on an "AS IS" basis without warranties of any kind. Dates are estimates only. Drawings are not to scale. Micron and the Micron logo are trademarks of Micron Technology, Inc. All other trademarks are the property of their respective owners.

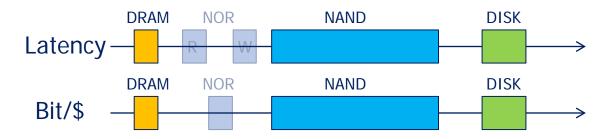

Two question to ask (for a new NVM)...

What are the cost/performance characteristics required to add *significant* value in computing devices?

For the leading emerging NVM's, what materials improvements are needed to realize this value?

Computing memory hierarchy

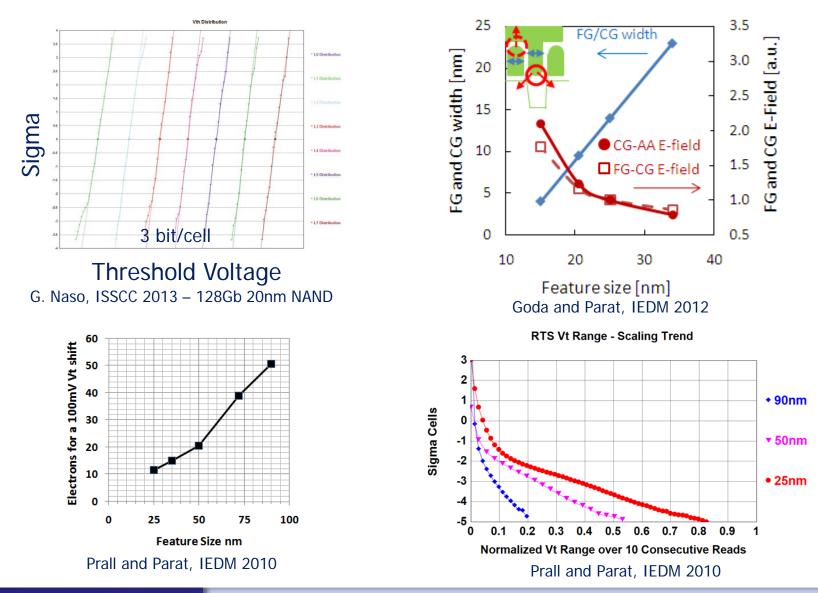
Where could a new memory add value?


(Assumption – you find a niche to grow)

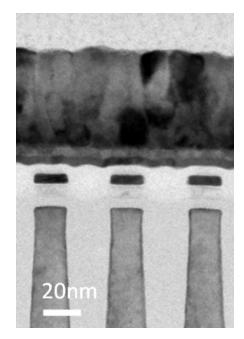
NAND had a big "hole to fill" in 2009

Normalized Parameters	DRAM	NAND	HDD
Latency	1x	~500x	~100,000x
\$/Bit	1x	~0.1x	~0.01x

A. Fazio, IEDM 2009

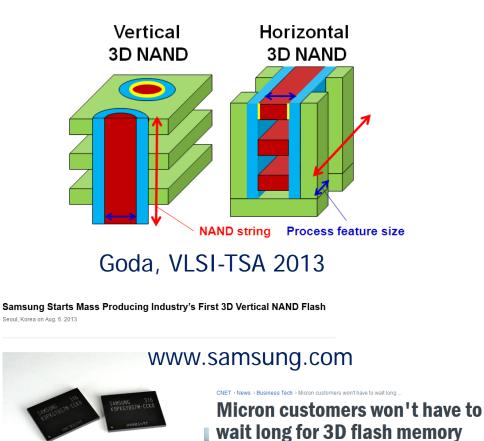

What do the holes look like today?

More importantly, what does this look like in 3-5 years?


Planar NAND is getting tough to scale...

... but continues to find solutions

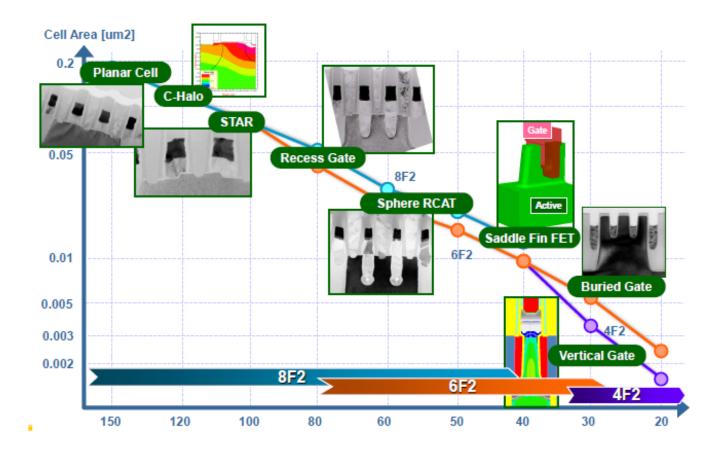
Planar floating gate cell



Goda and Parat, IEDM 2012

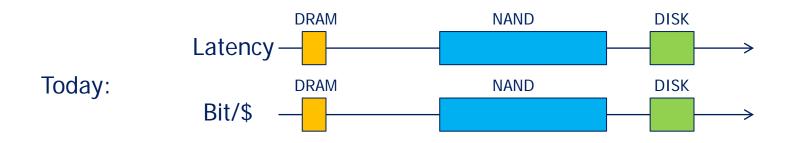
16nm NAND announced

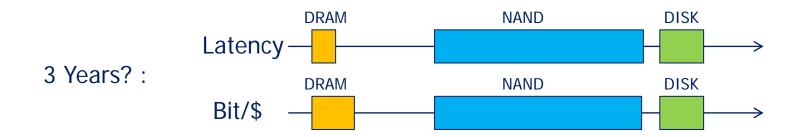
Micron


3D NAND

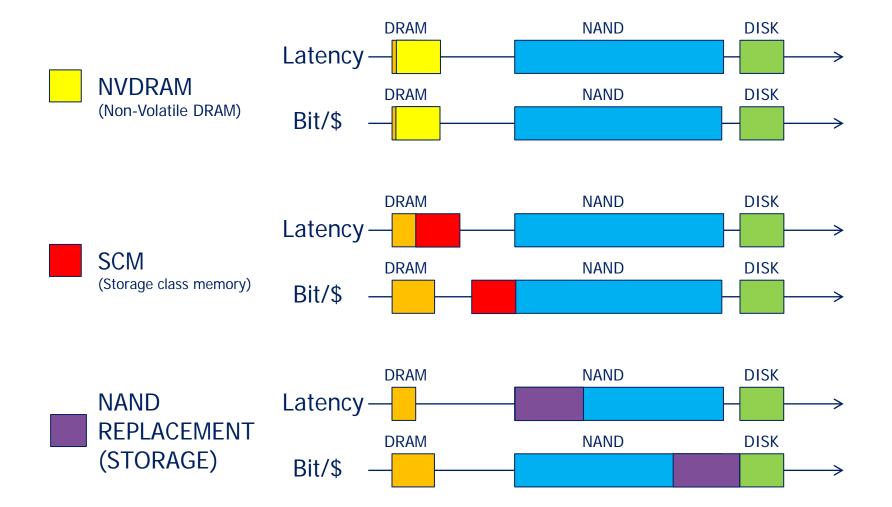
quarter of 2014. Represents a breakthrough in overcoming NAND scaling limit; ushers in new 3D memory era

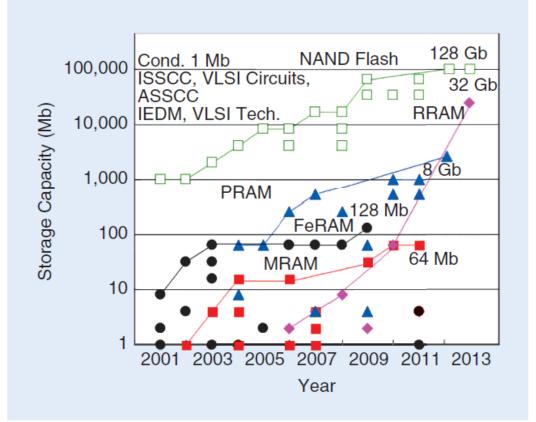
CEO Mark Durcan tells CNET that the company will start providing samples of the advanced memory technology to customers in the first


While DRAM continues to scale



Seon Yong Cha, IEDM short course, 2011


Main vector in DRAM/NAND: Cost reduction



Where can an emerging memory fit in?

Consider the "top 4" emerging memories

Technology	Company	Niche
RRAM	Adesto	EEPROM Replacement
MRAM	Everspin	Ultra high Reliability BBSRAM replacement
STRAM	Crocus	Embedded Security
FERAM	TI	Embedded
FERAM	Ramtron	Low Density – Power Meters
РСМ	Samsung Micron	NOR replacement- Wireless applications

Prall, IMW 2012

FIGURE 15: Memory capacity of emerging nonvolatile memories.

IEEE Solid-State Circuits Mag. Spring 2013

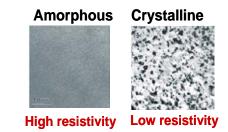
Micron

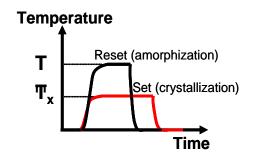
©2013 Micron Technology, Inc. | 10

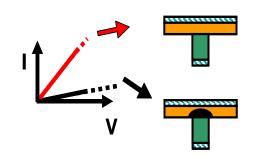
Memory "scorecard"

- Cost / bit
 - Small bit cell
 - Low programming energy
 - Multi-level or multi-layer
- Latency

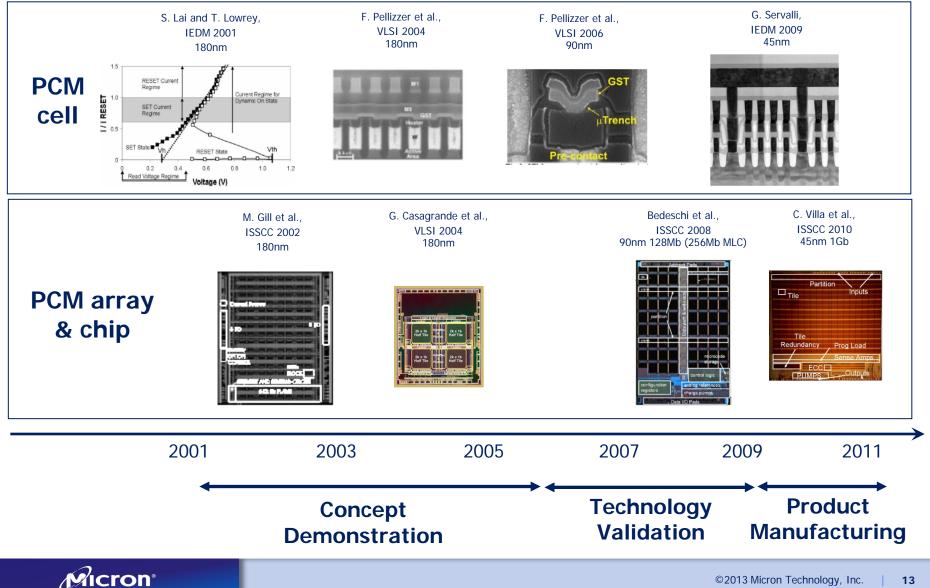
- Fast read (large signal + memory window)
- Fast / deterministic writes
- Write endurance


	Planar NAND	DRAM
Cost		
Cell size	4F ² 16nm	6F ² 2x nm
Programming energy	Low	(Refresh)
Multi-level / layer	1-3 BPC	None
Latency		
Fast read	10uS _(page)	~10ns
Fast write	1mS _(page)	~10ns
Endurance	1-100k	>1e15


Phase Change Memory (PCM)

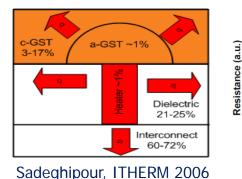

- Storage mechanism
 - Amorphous/poly-crystal phase of chalcogenide alloy (Ge₂Sb₂Te₅ – GST)
- Writing mechanism
 - Current-induced Joule heating
- Sensing signal
 - Resistance change of the GST
- Cell structure

Micron


1 transistor, 1 resistor (1T/1R)

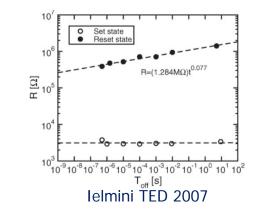
History of PCM Silicon Development

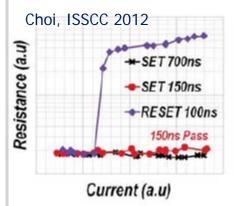
^{©2013} Micron Technology, Inc. 13


PCM Scorecard

	Planar NAND	DRAM	РСМ
Cost Overall			
Cell size	4F ² 16nm	6F ² 2x nm	4F ² 20nm
Programming energy	Low	(Refresh)	~High I
Multi-level / layer	1-3 BPC	None	Level/Layer
Latency Overall			
Fast read	10uS _(page)	~10ns	<100ns
Fast write	1mS (page)	~10ns	>100ns
Endurance	1-100k	>1e15	1e8

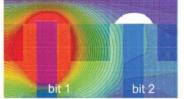
PCM Cell Challenges


High programming current


Micron

20nm cell 0 20 40 60 80 100 120 140 160 180 *Ireset* (uA) Kang, IEDM 2011

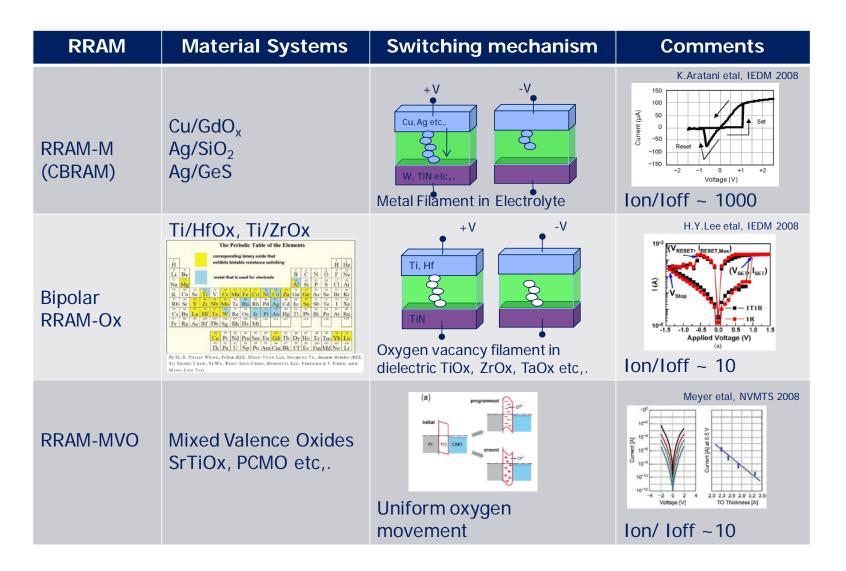
Resistance drift (MLC)



 Programming speed to SET/crystallized state

Thermal disturb

90 nm structure (a)

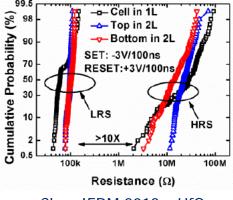

45 nm non-isotropic (b) R 45

bit

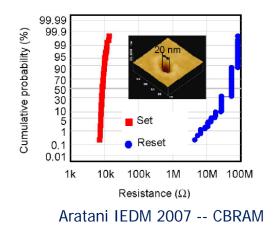
bit 1

RRAM

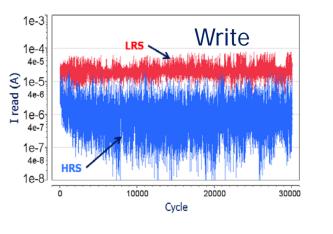
RRAM Scorecard

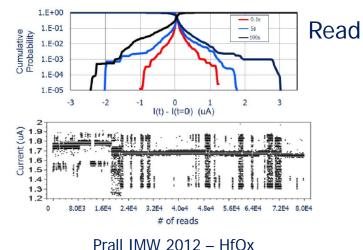

	Planar NAND	DRAM	RRAM
Cost Overall			
Cell size	4F ² 16nm	6F ² 2x nm	4F ² 20nm
Programming energy	Low	(Refresh)	Low - Med
Multi-level / layer	1-3 BPC	None	Level/Layer
Latency Overall			
Fast read	10uS _(page)	~10ns	<100ns
Fast write	1mS (page)	~10ns	~10nS
Endurance	1-100k	>1e15	1e8 ??

RRAM Cell Challenges



Micron




Chen IEDM 2012 - HfOx

Write current scalability?

Noise

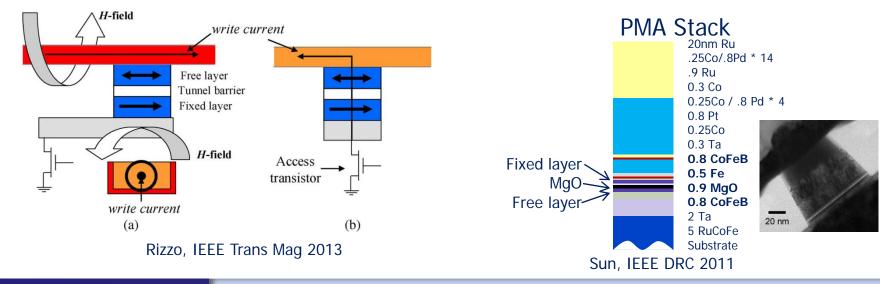
MRAM

Fast switching could enable DRAM replacement

FEATURES

Micron

- +3.3 Volt power supply
- Fast 35 ns read/write cycle
- SRAM compatible timing
- · Unlimited read & write endurance
- Data always non-volatile for >20 years at temperature
- RoHS-compliant small footprint BGA and TSOP2 package
- AEC-Q100 Grade 1 option in TSOP2 package.

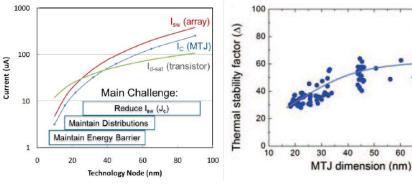


MR4A16B

1M x 16 MRAM

MR4A16B Datasheet, www.everspin.com

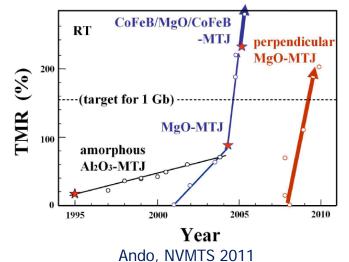
But field / toggle MRAM cell too large \rightarrow STT-MRAM

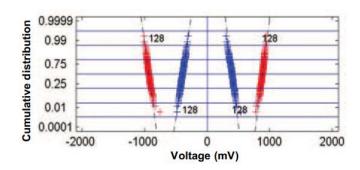

STT-MRAM Scorecard

	Planar NAND	DRAM	STT- MRAM
Cost Overall			
Cell size	4F ² 16nm	6F ² 2x nm	6F ² 20nm
Programming energy	Low	(Refresh)	Med I
Multi-level / layer	1-3 BPC	None	Layer
Latency Overall			
Fast read	10uS (page)	~10ns	< 30ns
Fast write	1mS (page)	~10ns	~10ns
Endurance	1-100k	>1e15	>1e15

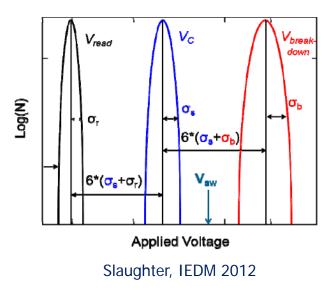
STT-MRAM Cell Challenges

Writing current vs. stability

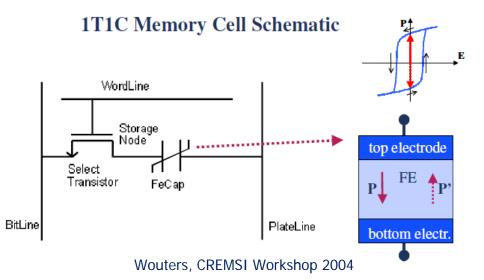



Park, VLSI 2012

60 70 80


Operating window

Tunnel junction reliability



FERAM

- Stores "charge" in a polarizable material
 - Typically PZT

 As with field/toggle MRAM, performance is similar to DRAM

FM23MLD16

8Mbit F-RAM Memory

Features

8Mbit Ferroelectric Nonvolatile RAM

- Organized as 512Kx16
- Configurable as 1Mx8 Using /UB, /LB
- High Endurance 100 Trillion (10¹⁴) Read/Writes
- NoDelay[™] Writes
- Page Mode Operation to 33MHz
- Advanced High-Reliability Ferroelectric Process

SRAM Compatible

- JEDEC 512Kx16 SRAM Pinout
- 60 ns Access Time, 115 ns Cycle Time

Advanced Features

 Low V_{DD} Monitor Protects Memory against Inadvertent Writes

RAMTRON

Superior to Battery-backed SRAM Modules

- No Battery Concerns
- Monolithic Reliability
- True Surface Mount Solution, No Rework Steps
- Superior for Moisture, Shock, and Vibration

Low Power Operation

- 2.7V 3.6V Power Supply
- 14 mA Active Current

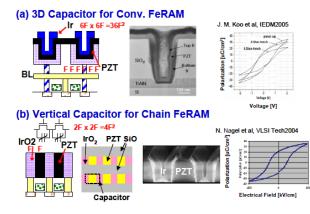
Industry Standard Configuration

- Industrial Temperature -40° C to +85° C
- 48-pin "Green"/RoHS FBGA package

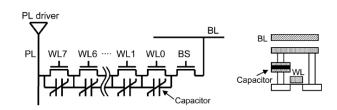
http://www.cypress.com/

FERAM Scorecard

	Planar NAND	DRAM	FERAM
Cost Overall			
Cell size	4F ² 16nm	6F ² 2x nm	>100nm
Programming energy	Low	(Refresh)	Low
Multi-level / layer	1-3 BPC	None	Layer?
Latency Overall			
Fast read	10uS (page)	~10ns	~10ns
Fast write	1mS _(page)	~10ns	~10ns
Endurance	1-100k	>1e15	>1e14

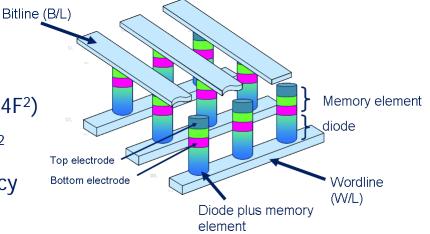


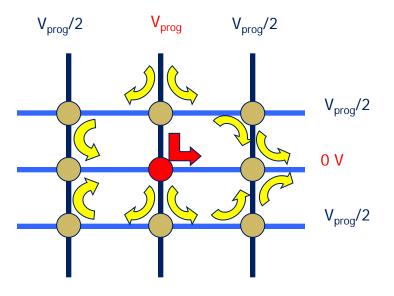
FERAM Cell Challenges


 Need to reduce cells size – limited by polarization / bitline cap ratio

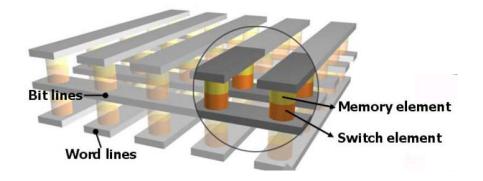
	D. Takashima et al., MRS Spring Meeting 2011						
Design Rule		0.5µm	0.25µm	0.2µm	130nm	130nm+DualOx	
Capacity		16Kb	8Mb	32Mb	64Mb	128Mb	
Chip		ISSCC1999	SSCC2001	issec2003	ISSCC2006	ISSCC2009	
Cell Struc	ture	Offset Cell	Offset Cell	Stacked Cell 1-Mask Cell		Adv. Twin Cell	
Capacit	or	Sputter PZT	Sputter PZT	Sputter PZT	MOCVD PZT	MOCVD PZT	
Cap. Siz	ze	3.24µm²	0.855µm²	0.49µm²	0.194µm²	0.098µm ²	
Cell Size	Ave.	15.8µm ²	5.2µm ²		0.719µm ²	0.32µm ²	
Cell Size	Pure	13.3µm²	4.2µm ²	1.539µm ²	0.612µm ²	0.25µm²	
Proces	S	2Metal	2Metal	3Metal	3Metal	4Metal Dual Ox	
	Chip Size		76mm ²	96mm ²	87.5mm ²	87.7mm ²	
R/W Cycle		80ns	70ns	75ns	60ns	75ns	
Page/Burst		80ns	40ns	25ns	10ns	1.25ns	
R/W Bandwidth		12.5MB/s	50MB/s	80MB/s	200MB/s	1.6GB/s	
Vdd		3.3V	3.3V	3.3V/2.5V	3.3V/2.5V	1.8V	

 Considering cell / array architecture solutions


Shiga JSSC 2010


Micron[®]

Multi-Layer Memory

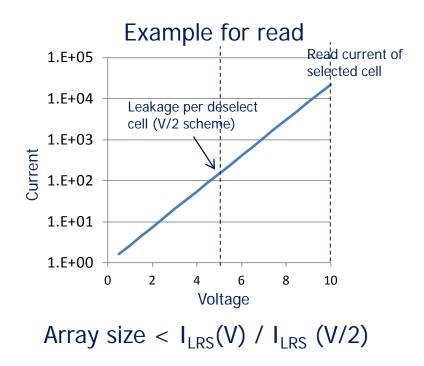

- Crossbar memory very attractive
 - "Simple" structure and minimum cell size (4F²)
 - Suitable for 3D stacking \rightarrow cell size (4/n)F²
 - ► Array over circuitry → better array efficiency

- The basic cell architecture requires a selector structure to be integrated in the BEOL
 - Parasitic paths exist through neighboring cells
 - Programming (and also reading) can perturb the array

A Wide Range of Material Choices

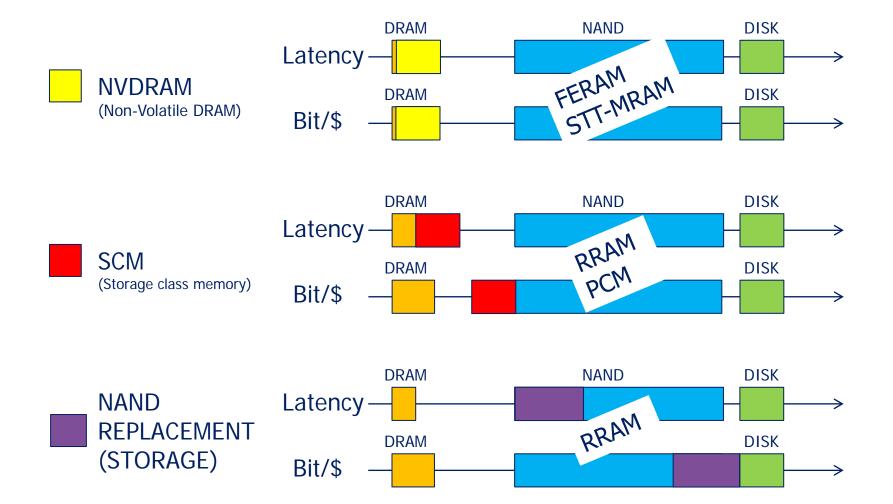
For the selector structure several devices have been proposed so far, none have been "proven"

Selector device options


- Homojunctions → polySi p/n junctions
- Heterojunctions → p-CuO/n-InZnO
- Schottky diode→ Ag/n-ZnO
- Chalcogenide Ovonic Threshold Switching (OTS) materials
- Mixed Ionic Electronic Conduction (MIEC) materials

Cross-Point Switch Requirements

- Very high forward bias current
 - Greater than the switching current
- Low leakage through unselected cells
 - Steep IV characteristic
- Bipolar operation may be required
 - Necessary for bipolar RRAM


Cell Type	~20nm Cell Current	Current density
PCM	100uA	10 MA/cm ²
RRAM	10uA	1 MA/cm ²

Summary Scorecard

	Planar NAND	DRAM	РСМ	RRAM	STT- MRAM	FERAM
Cost Overall						
Cell size	4F ² 16nm	6F ² 2x nm	4F ² 20nm	4F ² 20nm	6F ² 20nm	>100nm
Programming energy	Low	(Refresh)	~High I	Low - Med	Med I	Low
Multi-level / layer	1-3 BPC	None	Level/ Layer	Level/ Layer	Layer	Layer?
Latency Overall						
Fast read	10uS _(page)	~10ns	<100ns	<100ns	<30ns	~10ns
Fast write	1mS (page)	~10ns	>100ns	~10nS	~10ns	~10ns
Endurance	1-100k	>1e15	1e8	1e8 ??	>1e15	>1e14

Where can an emerging memory fit in?

Summary

- Many new NVM technologies are attempting to gain a foothold in the computing devices
- While they have cost *or* performance advantages over NAND or DRAM, none beat the performance of DRAM or the cost of NAND
- The most direct fit would be a NAND/DRAM "blend" / SCM, but the system implementation for this type of memory is not yet established
- We need a few more advances in materials to make these a reality!
- Acknowledgments: Thanks to the Micron R&D team and the work of the authors presented here.

