

Interfacial Engineering in ReRAMs based on Strongly Correlated Electron Systems

Seshubabu Desu, Dongmin Chen, Lee Cleveland, and Jean Yang-Scharlotta November 2013

Summary

- 4DS has developed a robust ReRAM system, (MOHJO[™]) based on Strongly Electron Correlated Systems such as Pr_{1-x}Ca_xMnO₃ (PCMO)
- Technology attributes include: low power operation, high-speed switching, scalable down to 10 nm and below, high cycle endurance and long retention time
- ■MOHJO[™] is implemented as a back end process atop standard CMOS flow
- MOHJO[™] is based on Mott metal-insulator transition driven by filedinduced non-linear transport of oxygen vacancies across the heterojunction

4DS TEST CHIP 16kb

Two mini-arrays

Two Full Banks of 8kb Each

Cross-Sectional View of Test Chip

TEM of core area

- Base process is a friendly 0.18um 4 metal layers, 5 via layers for ease of implementation, while we have single cell data proving scaling down to 30nm.
- Resistor process is entirely contained above the top via layer.
- Resistor process is low temperature, metal/via process friendly, with no visible or measureable negative impact to the lower interconnect layers.

Highly-oriented, Stoichiometric, Crystalline Material

Typical Device Hysteresis is Asymmetric

Extra low power operation on the reset side and low power operation on the set side.

Low power operation enables a bulk or block erase optional feature.

- Low power bulk erase is also a highly desirable feature in security applications where the data may need to be wiped out quickly.
- The bulk erase is a feature and not a requirement as in many current nonvolatile memories.

Both the Set (Program) and Reset (Erase) operations can be performed on a byte by byte basis.

Typical Cycling Data

The cycling for this type of memory is very stable, with good results up to 10^{^9} using dumb cycling. With a smart algorithm including verify and field modification much higher endurance is expected

T (°C)	Т (К)	Relaxation Constant (sec)
27	300	1.4 X 10⁹
50	323	9.4 X 10⁸
85	358	5.8 X 10 ⁸
90	363	5.5 X 10 ⁸
130	403	3.6 X10⁸

Typical Read Disturb Data

• The graph shows the disturb of the reset condition, due to the asymmetrical hysteresis of this material the read is always done in the set direction so the worst case disturb would be of reset data shown here with no noticeable read disturb at 10^12 reads

Scalability data down to 30 nm (projected < 10nm)

MOHJO[™] IS NOT BASED ON FILAMENTARY PROCESS

Forming is not Required for 4DS Resistors

4DS ON State Resistance is Area Dependent

DS

4DS ON Resistance is a Weak Function of Compliance Current

OXIDATION OF TOP ELECTRODE (TE) IS SEEN IN MOHJO[™]

$Ca_{Pr}^{x} = Ca_{Pr}^{'} + h^{\cdot}$ $Mn_{Mn}^{x} + h^{\cdot} = Mn_{Mn}^{\cdot}$

 $Ca_{Pr}^{x} + Mn_{Mn}^{x} == Ca_{Pr}^{'} + Mn_{Mn}^{'}$

$V_0^x = V_0^{\cdots} + 2e^i$ $2Mn_{Mn}^{\cdot} + 2e^i = 2Mn_{Mn}^x$

$V_o^x + 2Mn_{Mn} == V_o^{-} + 2Mn_{Mn}^x$

Oxidation of reactive Top Electrodes (TE)

1. Oxygen migration->Change Band structure and Fermi Level

PCM60K0.5

Phys. Rev. B 80, 235113 (2009)

PCM0(0.5)

Reset

(Ve

a-TiO

 \cap

PCMO(6.5

Ti

In situ TEM Observation of Oxygen Vacancy Motion

CHANGES IN MANGANESE OXIDATION STATES ARE SEEN IN MOHJO™

No interaction with noble metals

Both Oxide Formation and Oxidation State Changes are Seen

R. Yasuhara, et al., APL 97, (2010)

Metal Oxide Heterojunction	P-N Junction	
Gibbs Energy	Fermi energy	
Space vacancy formation	Space charge formation	
Ion migration	Drift of electrons/holes	
Temperature sensitive	Temperature sensitive	
Field dependent	Field dependent	

METAL-INSULATOR TRANSITION IS SEEN AT THE INTERFACE IN MOHJOTM

4DS Oxides are Correlated Electron Systems

- Resistivity modulations in the bulk can be induced by: Magnetic field

 - **Electric field**
 - **Charge particle bombardment**

Resistivity modulation in the bulk is attributed to the Metal to Insulator transition

Spectro-Microscopy Image and NEXAFS (Near Edge X-Ray Absorption Fine Structure)

Conduction band edge for LRS = 528 eV Conduction band edge for HRS = 528.7 eV

Mott gap = 0.7 eV

H.S. Lee et al., Sci. Rep. 3, (2013) 1704.

Metal Oxide Heterojunction Operation (MOHJO[™])

Technology – Key Attributes

4DS' MOHJO[™] memory is high speed, non-volatile, low power, low cost and is able to be produced using existing semiconductor manufacturing equipment

LOW COST	 Produced using +1 to 4 mask steps when combined with standard CMOS process (as compared to +16 to 20 mask steps for FLASH) for the memory core. Scalable and repeatable proprietary wafer process for mass production. 	EXISTING FAB EQUIPMENT / PROCESSES	 Simple integration into fabs, process steps utilizes established fabrication equipment and processes. Proprietary process is implementable as customized modules on existing fabrication tools.
LOW POWER	Low voltage operation and low current, making it attractive for a variety of applications DENSIT		 High density: 4F² with diode/6F² with transistor
LOW TEMPERATURE	 The memory is formed in the back end metal layers with a proprietary low temperature process. 	LONG CYCLE LIFE	• 10 ^{^9}
HIGH SPEED	Fast Read/Write	RELIABILITY	 10 year data retention
SCALABILITY	 Tested at 30nm, projected down to 10nm and below. 	CMOS COMPATIBLE	Process is CMOS compatible.

Thanks for your attention