An Approach to Mass-produce Si Nanomaterial Composite with High Energy Density in Li-ion Cells without Cycle Life Compromise

Yimin Zhu, Ph.D Director of Battery & Fuel Cell Nanosys, Inc

NCCAVS TFUG-Energy Storage 2012

Commercial Strength Built on Scientific Bedrock

- Founded in 2001
- Based in Palo Alto, CA
- Dominant platform of fundamental and applied nanotechnology IP
 - Exclusive University relationships
 - Currently 750+ patents & apps

- 10 Years of industrial development with leading global partners
- Entering into licensing agreements and scaling to high volume manufacturing
- On path to achieve >\$300M in annual within 5 years
 Anosys

Nanosys is the Leading Architected Materials Solution Company

Process-Ready Architected Material Solutions Moving from Lab to Loading Dock

Lighting Solutions

Optical components that improve color quality, efficiency and reduce cost of system for LED backlighting

Energy Storage

Cell components that increase storage density, capacity and reduce cost of system for Li-ion batteries

Industrial Revolution

Process innovation, once king

Materials Revolution

Value shifting to novel, tunable materials

High volume production process using battery graphite as direct substrate for Si nanowire growth

- Cost effective
- High Si utilization
- Improves dispersion within slurry and drop in process
- Si-C conductivity improvement
- Si Weight % is controllable, focusing on 500 ~ 1600 mAh/g
- High electrode loading, i.e. >1.5g/cc
- Good cycling performance, cycled >1000 times

SiNANOde: 500 ~ 1600 mAh/g

Nanosys SiNANOde vs. Si Particle/Porous Si

Nanosys Exploit Advantages & Defeat Potential Problems of Si Nano-materials

Nanosys SiNANOde	Other Si Particle/Porous Si
Low A/V & Intact NW after cycling	High A/V; defects
Pack density similar to graphite	Pack density lower than graphite
Can be mass-produced with a competing cost & high Si utilization	The structured nanomaterials can do magic in the lab but they are difficult and expensive to commercialize

- The nanowire has lower surface area/volume ratio, A/V, compared to the nano-particle or nano-porous powder with the same diameter.

- Reduction in particle diameter results in the A/V ratio much lower for nanowire vs. spherical particle, and hence the nanowires have lower surface reactivity and better cycle life.

SiNANOde™ vs Commercial Nanopowder

Full cells w/8% Si: Nanowires vs. nanopowders

Full Cell: SiNANOde vs. Graphite

- Full cells with a baseline cathode (LCO) & a SiNANOde exhibited ~350 cycles at ~76% capacity retention, which still showed much higher anode-specific capacity over graphite anode.

Normalized Capacity at High C-Rate

SiNANOde Full Cell Voltage Profile

- A typical slope-like charging voltage profile between 3.0 and 4.2V with a shoulder at 3.8~3.9V.

- During discharging a clear Si capacity plateau around 3.4~3.5V
- The full cells can be operated in a typical voltage range of 3 \sim 4.2V

Enhanced SiNANOde Capacity - ICE of >92% even for a SiNANOde with a

reversible capacity of ca. 1678mAh/g.

Full Cell Overall Electrodes Capacity Gain Capacity Gain

Overall cell electrodes capacity can be improved between 30% ~40% when used 900~1600mAh/g SiNANOde and >160mAh/g cathode.

>1000x Cycle Life, 80% retention in 18650 full cell

18650 Cell-1 Using Si composite

- The 18650 cell was build with 4.8mAh/cm² Si anode
- More than 1100 times at 0.5C discharge current.
- After 135, 400, 425, and 950 cycles the cell was checked at 0.1C showing that the capacity can be recovered at such current.

— Normalized Capacity

SEM Characterization of SiNANOde Post Cycling

Prior to cycling

10th cycle

~100th cycle

- SiNANOde material deforms to fill void areas in carbon anode material matrix
- SiNANOde material remains intact and fully functional after 100% DoD cycling

Integrates into Existing Battery Manufacturing Processes

Lithium-ion Manufacturing Process

SiNANOde Performance Summary

Excellent performance of SiNANOde material in partner full cells

- 1st cycle efficiency 93%
- High Specific and volumetric
 Capacity: 300~400 Wh/kg or
 700~800 Wh/L
- Controlled specific surface area and mitigated side reactions
- High and stable coulombic
 efficiency over cycles → better
 cycle life

Acknowledgements

- Team Battery at Nanosys
- Nanosys Funded Projects
- Support from the U.S. Department of Energy

Questions?

For more information, visit: http://www.nanosysinc.com

