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Spike RTA: Critical for Device Performance

• Spike RTA is a critical step:
– Activation / Defect Annealing / Diffusion
– Typically ~1000-1050°C for ~ 1.5 s

• 1K variation in peak T ≡ 1nm variation 
in gate length (at ~ 45nm node)

Th. Feudel et al.
ECS Trans. 6(1) p373 (2007)
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The RTP Pattern Effect is Caused by Non-Uniform 
Optical Properties
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• Optical properties vary with
– Films / materials
– Lateral structures (patterning)

• There are many length scales of 
non-uniformity

– Wafer (cm)
– Die (mm)
– Device (μm/nm)

• Experiments & theory show that 
the pattern effect arises from two 
types of variation

– Variation in absorption of heating 
lamp power

– Variation in emission of radiant 
heat from the wafer

P. Morin et al., ESSDERC 2009, p288
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Modelling Impact at Device Level

• Models predict optical, 
thermal, process & device 
characteristics
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Within-Die Uniformity Predictions

Vivek Joshi et al., Univ. Michigan
Analyzing electrical effects of RTA-driven local anneal temperature variation
The 15th Asia and South Pacific Design Automation Conference (2010)

PMOS NMOS
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RTP Pattern Effect: The Early Days

• The problems of patterns in RTP 
were recognized early in the 
development of commercial RTP

Y. Ohno et al.: 1985
Symp. VLSI Technol. Dig. 
Tech. Papers (1985), p. 86



Innovation • Speed • Solutions7/13/2011 -- 8

Effect of Surface Optical Properties on Heat Transfer

• Spectral emittance affects the energy emitted or absorbed at any given wavelength
– ε(λ) = a (λ) (Kirchhoff’s law)
– On wafers, patterns & films make ε(λ) ≠ constant

• To calculate total lamp power absorbed
– Integrate ε(λ), weighted by lamp spectrum (short λ) ⇒ Total Absorptance, atot

• To calculate total heat radiated
– Integrate ε(λ), weighted by wafer’s thermal emission spectrum ⇒ Total Emittance, εtot
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Wafer Coatings and Patterning Affect Optical Properties

• Data from “Investigation of Pattern Effects in Rapid Thermal Processing Technology: Modeling and 
Experimental Results”, F. Cacho et al., IEEE Trans. On Semiconductor Manufacturing, 23(2), 2010

• Parametric study of effect of gate width (W) and space between gates (P) covers wide range of conditions
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Lateral Heat Flow Limits the Magnitude of 
Pattern-Induced  ΔT

• A characteristic length-scale, LS, defines the minimum size of pattern that causes significant ΔT
• LS depends on:

– Rate of lateral heat transfer
– Heat flow through surfaces

Energy flows into and out of the surfaces of the wafer
⇒ Non-uniformity causes pattern effects

ΔT ~ < 5KBA C N

Strong conductive coupling

Weak conductive coupling
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The Effect of a Stripe of Absorbing Material on ΔT
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• ΔT caused by a stripe of material with 
higher lamp power coupling

• Thermal conduction makes ΔT 
decrease with feature size

• For large feature sizes thermal 
conduction has no effect on ΔT

• Experimental RTO & RTA studies 
show good agreement with the theory
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"Pattern Effects and how to Explore Them", J. Niess et al., in 
10th International Conference on Advanced Thermal 
Processing of Semiconductors, p. 49 (2002)
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Pulsed Heating: Surface Heating Regime
⇒ Length Scale << Wafer Thickness

Pulse of 
Energy

Labs ~ 1-5 μm

Lthermal diff 
(e.g. τ ~1 ms ⇒100 μm)

dwaf ~ 775 μm

Three Key Length-Scales
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Short LD in ms ⇒ Large ΔT Over Short distance

Heat has less time to diffuse in ms-
anneal than in RTP
⇒ pattern effects emerge at shorter 
length scales: ~ 10 μm 
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H. Okabayashi
et al., Appl. 
Phys. Lett. 36, 
(1980) 202.
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Pattern Effects in Millisecond Annealing

• High powers & short pulse lengths can cause large 
lateral ΔT in MSA

• Laser scanning pattern effects can also depend on 
scan direction

• Fortunately, in MSA, the process window tends to 
be large (very small amount of dopant diffusion)

R. Beneyton et al., ST Microelectronics - RTP2008

T. Kubo., Fujitsu - RTP2008

S. Kato, SELETE - IWJT 2010
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Pattern Effects in Pulsed Laser Anneal

• At very short time-scales (sub-μs), LD < Labs: “Adiabatic” heating
• ΔT evolves where energy is absorbed (in all 3 dimensions) 

M. Mansoori,
vTech 2002
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How to Manage the Pattern Effect?

• There are 
many 
possible 
paths!
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Intel: Reducing Pattern Effects with Poly-Dummies

• From: IEDM 2007 Short Course on CMOS Boosters (Paul Packan, Intel)
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An Absorber Layer Can “Hide” the Pattern

R. Beneyton et al., ST Microelectronics
Origin of local temperature variation during spike anneal and millisecond anneal
16th IEEE International Conference on Advanced Thermal Processing of Semiconductors - RTP2008
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The Process Recipe Could Be Modified

• By reducing the spike anneal ramp rate, the effect 
of variations in absorbed lamp power is reduced

I. Ashan et al., Advanced Semiconductor Manufacturing 
Conference, 2009. ASMC '09. IEEE/SEMI
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RTP Configuration Determines Pattern Effect ΔT
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Test on a checkerboard 
patterned wafer

– Single-sided illumination of patterned surface
• All the lamp power is incident on the pattern ⇒ Maximum ΔT

– Dual-sided illumination
• Split the lamp power between the surfaces ⇒ Significantly reduced ΔT
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Backside Heating & Frontside Radiative “Insulator”

Limitations:
–Only works with mirror very close to wafer
–Cooling rate decreases
–T measurement integration
–Wafer support is a difficult challenge

A. Kersch et al., MRS Symp. 
Proc. 429 (1996), p. 71
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Limitation of Front-Side Mirror Approach

• Pattern effect suppression becomes less effective once the mirror 
is further away than the length scale of the pattern on the wafer

• However, bringing the mirror closer than ~ 3 mm risks wafer 
warping from conduction-driven thermal runaway
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Hot-Shielding: Creating a Dynamic “Hot Wall”
Radiation 
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Hot-Shielding: Isothermal Cavity Robustly Eliminates 
Effects of Optical Properties & Geometry

• Spike Anneal Simulations (200K/s from 600 to 1000°C)
• Perfect Hot Shield ⇒ No Pattern Effect

– If the Hot Shield only reaches 950°C (when wafer is at 1000°C) then ΔT ~ 2.5 K

• Hot Shield Operation is independent of gap size
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“Hot Shielding” – A Uniquely Flexible Approach 
for Eliminating the Pattern Effect

Hot Shield ⇒ Local thermal equilibrium between wafer and “dynamic hot wall”

⇒ No pattern effect + Preserves Full Flexibility of RTP
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Effect of Hot-Shielding on Spike Profiles & 
Process Results
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small effect on XJ-RS trade-off
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"Pattern effects during spike annealing of ultra-shallow implants", J. Niess, 
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xA
Absorbs/emits more

yB

Absorbs/emits less

• Dual side heating: Optimal ratio of PFront:PBack minimizes pattern effects
– Frontside-only heating ⇒ ΔT from power absorption variations
– Backside-only heating ⇒ ΔT from heat loss variations
– Optimized ratio of front-side to back-side heating  ⇒ Balance out the non-uniformity
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A: Frontside Heating

Absorbs more
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Emits lessEmits more

B: Backside Heating

xA+yB: Balanced Heating

Combining Front and Backside Heating can 
Suppress ΔT from both atot AND εtot Variations
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Simulations Have Shown Unique Capability of 
Lamp Ratio Control

• “Controlled illumination”
concept simulated by A. 
Kersch in 1996

• Plot is for non-uniformity 
during ramp to ~1050°C 
(Open-loop)

• Adjusting PF:PB ratio 
allows ΔT to be minimized

• Device results have 
confirmed that this 
approach gives excellent 
suppression of pattern 
effects at < 45nm

A. Kersch et al., MRS Symp. 
Proc. 429 (1996), p. 71
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• Non-equilibrium conditions enable rapid & flexible controlled 
heating & cooling on time-scales from ns to s
– Pattern effects are a natural consequence of non-equilibrium heating

Conclusions

• Pattern-induced ΔT depends on the heating power and on 
the thermal & optical properties of the wafer

• There are many ways to manage the pattern effect for both 
conventional RTP & for the surface heating regime
– Device & equipment manufacturers can work together to meet the challenge




