High Performance of High Density and High Transparency Indium Tin oxide (ITO) and Zinc Aluminum Oxide (ZAO)

Eduardo del Rio, Eugene Ivanov, Tosoh SMD Inc.
K. Omi, H. Teraoka, Tosoh Corporation
Outline

1) Material improvements: density and microstructure
2) Bonding technique improvement
3) Transparency improvement
1) Material Density Improvements

- Target density: > 99% of theoretical

Higher density decreases the arcing events and particle emission during film deposition.

Even small differences of density have a significant impact.
1) Material Density Improvements

- Particle Emission increases with increasing arcing events
1) Material Density Improvements

- Example to quantify arcing events with respect to density over 28hr of sputtering

<table>
<thead>
<tr>
<th>Arcing (Counts/hr)</th>
<th>Low density</th>
<th>High density</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>> 350</td>
<td>71</td>
</tr>
</tbody>
</table>

*Data based on ZAO material

<table>
<thead>
<tr>
<th>Arcing (Counts/hr)</th>
<th>High Performance</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>5</td>
</tr>
</tbody>
</table>
1) Material Microstructure Improvements

- Microstructure uniformity (dopant distribution)

Non-uniform (ITO)

Uniform (ITO)

ZAO Microstructure

Aluminum Distribution
1) Material Microstructure Improvements

![Graph showing Arc Counts (a.u.) vs. Time (hour) for Uniform and Non-uniform microstructures]
2) Bonding technique improvement

• Source material directly affects the performance of the deposited films.

• Issues such as target cracking, contaminant substances reduce film performance.

 • Target cracking = bonding coverage.
 • Contamination = target assembly

 “Issues” translate into production output decrease
2) Bonding technique improvement

- Source material assembly

- X-ray Inspection system
2) Bonding technique improvement

- Stability of source material during film deposition affects the performance of the film

Unstable (cracking is possible) Stable
2) Bonding technique improvement

- Larger length sections reduces the number of gaps in the material

 Contamination reduction

 Arcing and Particle Emission reduction

No solder exposure on the surface
2) Bonding technique improvement

- Material Thickness also favors high performance
 - Mechanical stability: reduce cracking probability
 - Arcing and particle emission reduction

Final thickness:
- 8 mm
- No cracking
- No nodules
3) Transparency Improvements

• “Standard” ITO and ZAO films transmittance
3) Transparency Improvements

- Concept for new ITO film: ITO-X

Low film resistivity with higher transmittance at the infrared region

Graph showing the transmittance of different ITO films as a function of wavelength.
3) Transparency Improvements

- Concept for new ZAO film: ZAO-S1

Low film resistivity with higher transmittance at the infrared region

![Graph showing transmittance vs. wavelength for different compositions of ZAO and ZAO-S1.](image)
3) Transparency Improvements: ITO-X

- Accelerated aging test: 85°C – 85% RH

![Graphs showing resistivity and transmittance comparison]

- No change on resistivity over time
- No change on transmittance
3) Transparency Improvements: ZAO-S1

- Accelerated aging test: 85°C – 85% RH

Improved resistivity over time
No change on transmittance
3) Transparency Improvements: Film Stability ZAO-S1

- AFM Images/Heat Resistance

<table>
<thead>
<tr>
<th>Surface area (μm²)</th>
<th>ZAO</th>
<th>ZAO-S1 (Improved)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>1.058</td>
<td>1.028</td>
</tr>
</tbody>
</table>

Good humidity resistance → Small surface area
Summary

• Source TCO material quality and performance directly affects the performance of the TCO films

• High density material reduces arcing events and particle emission

• Microstructure uniformity improves the performance

• Target material stability reduces cracking and contamination during deposition

• High performance ITO-X and ZAO-S1 show improvement on film resistivity and film transmittance when compared with “standard” ITO and ZAO