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Solar Outlook

Then... To make a difference...
1. Efficiency 1. Cost
2. Reliability 2. Reliability
3. Cost 3. Efficiency

* Engineer durable solar technologies with robust and predictable
lifetimes. Start early in development — avoid roadblocks.

» Leverage from reliability physics in microelectronics — thin-film
metrologies, kinetic models, accelerated tests, life prediction.

e Are degradation processes coupled and how?

 Kinetic models for damage evolution - basis for life prediction and
accelerated testing (T, environment, stress, solar flux, etc.)

o Effective defensive strategies — e.g. transparent barriers with anti-
reflective properties.



Degradation and Reliability of PV Devices and Modules
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Evolution of Defects and Device Reliabllity

absence of chemically active environmental species, damage propagates if

G > G,[J/m|

presence of chemical species and photons, damage propagates even if
environment and

G < GC [J / mZ] stress accelerates

defect evolution

Role of coupled kinetic parameters:

e mechanical stress
e temperature
e environmental species

e photons
(photochemical reactions)

Substrate




Typical Film Adhesion Tests that Don’t Work Well
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- complex stress and deformation fields Film -

.. . Interface Crack
- principally gualitative results Substrate
- (nano) scratch test even less quantitative
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- plastic deformation of film \Interface Crack
- temperature complications in m-ELT Substrate
o Blister Test -
. . Iim
- compllant loading system Substrate] N Yt
- environmental effects P
- etching/machining of cavity difficult .

Cavity in Substrate

Major limitations: need detailed film properties, film stress relaxation and film plasticity
= principally qualitative results for all above methods!



Quantitative Adhesion/Cohesion and Debond Kinetics
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Adhesion/Cohesion Sample Preparation

Thin films sandwiched between elastic substrates
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Gunes, et. Al. Chem. Rev. 2007.

Fabricated 4-point bend adhesion and DCB cohesion test structures using standard epoxy
bonding techniques.

Similar transparent glass substrates on each side.



Fracture Energy, G (J/m?)

Adhesion/Cohesion of PSHT/PCBM Structures
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Factors Effecting Cohesion of P3HT/PCBM Layers
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« Composition of the heterojunction layer
— limited bonding to fullerene — expect low cohesion

— preliminary measurements indicate higher ratios
of P3HT to PCBM make stronger active layer

* Annealing

— morphology of the P3HT:PCBM film
changes with annealing, expect effect
morphology on cohesion

TEM of P3HT:PCBM film
Heeger, et. Al. Adv. Func. Mat. 2005.



Effect of Composition of BHJ on Cohesion
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AFM of Failure Path Near Ca Interface
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Small Molecule Solar Cell Thin Films
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Molecular Bond Rupture Kinetics
(Barrier Films)

Grad student: Fernando Novoa and Monika Kummel

environment and

G < GC [J / m2] stress accelerates

defect evolution




Weathering Test of Polysiloxane Barrier

UV exposure: 28 mW/cm? at 6 mm UV-257nm




Environment and Stress Accelerates Damage

Does UV exposure accelerate decohesion in solar cells?

Simulated UV Exposure
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Assessing UV and Environment on Debonding Kinetics
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UV Effects on Molecular Bond Rupture

UV Exposure (3.4 eV)
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Modeling Bond Rupture Kinetics

 Interaction of moisture with strained debond tip bonds hv

nH,O + B(debond tip) — B”(activated complex) H,0®"

hy

o Atomistic bond rupture models:

rate =f_| exp —Y
KT

« Damage growth rate:
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Bond Rupture Parameters

N - bonds per unit area f, - attempt frequency

u, - work of rupture
2y - N u,
w - crack width

u, - energy barrier
n - 2NKT

Energy

Si-0-Si + H,0
N

Substrate

activation
barrier

attempt
frequency

Bond Rupture Reaction
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UV Effects on Molecular Bond Rupture
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Delamination of EVA-TPE Lamination

Poly-ethylene vinyl acetate (EVA) copolymer extensively used by solar module
manufacturers, particularly for laminating c-Si photovoltaic modules.

Good optical properties and high adhesive contact with glass cover and Si cells.
Inexpensive and relatively easy fabrication.

Parreta Antonio, et al., Solar Energy
Materials & Solar Cells, 2005

Delamination can occur between EVA and the front surface of the solar cells.
More frequent and in hot and humid climates.

Exposure to atmospheric water and/or ultraviolet radiation leads to EVA
decomposition to produce acetic acid, lowering the pH and increasing corrosion.

EVA Tg ~ -15°C so lower temperatures may result in “ductile-to-brittle” transition in
adhesive/cohesive properties.



Delamination of EVA-TPE Lamination
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Summary for PV Durability and Reliability

We want to engineer durable PV devices and modules
with robust and predictable lifetimes.

 Leverage from reliability physics in microelectronics —
mechanisms, kinetic models, accelerated tests and life prediction

* Develop metrologies to quantitatively characterize thermo-
mechanical properties (e.g. adhesion, cohesion), photochemical
and environmental degradation processes

» Are degradation processes coupled and how?

« Kinetic models of damage evolution - basis for life prediction and
accelerated testing (effect of operating temperature,
environment, mechanical stress, solar flux, etc.)

 Effective transparent barriers with anti-reflective properties and
low cost.



