

## Status and Challenges for Non-Volatile Spin-Transfer Torque RAM (STT-RAM)

### **Mohamad T. Krounbi**

S. Watts, D. Apalkov, X. Tang, K. Moon V. Nikitin , A. Ong, V. Nikitin, E. Chen **Grandis, Inc.** 

International Symposium on Advanced Gate Stack Technology Albany, NY September 29 – October 1, 2010





• Grandis Corporation Overview

#### • STT-RAM Status

- MTJ Write Current Density
- STT-RAM Thermal Stability
- STT-RAM Scalability
- Test Chip results
- Latest Advances in write current performance
  - Dual MTJ Design
  - Partial perpendicular Anisotropy
- Conclusions

#### **\*STT-RAM: Spin Transfer Torque Random Access Memory**



#### • Joint Development Program with Hynix Semiconductor moving ahead fast

- Hynix has large team working on STT-RAM, expect fully-functional STT-RAM chips this year
- Major paper on high-density STT-RAM chip operation accepted for presentation at IEDM 2010

#### • Significant progress in MTJ development since last year

- 2x reduction in write current, 30% stability improvement, 10-20% TMR improvement
- In-plane STT-RAM shows clear, scalable path to below 20 nm technology

#### • Met Phase I targets on \$15M DARPA contract six months ahead of schedule

– Demonstrated < 0.25 pJ MTJ write energy, \$8.6M Phase II begins in September 2010

#### • Presented key papers at VLSI Symposium, IEEE IMW & other major conferences

 Covered latest advances in MTJ materials, scalability of in-plane STT-RAM technology, read disturb and write error rates, and design requirements for thermal stability and 1 Gb STT-RAM chips

#### • Latest granted patents take U.S. patent total to 55

- Grandis now has 192 filed patent applications and 68 issued patents worldwide

#### • Significant increase in worldwide interest in STT-RAM over past 12 months

Strong interest from multiple parties in licensing and partnering with Grandis

### **Grandis Development Partners**

GRANDIS Pioneer in STT-RAM Technology



### The Need for a New Memory Technology

GRANDIS Pioneer in STT-RAM Technology

#### • All existing memory technology is greatly challenged beyond 45 nm

- SRAM: high power consumption, leakage increasing 10X with each technology node
- DRAM: refresh current increasing, incompatible process for embedded applications
- Flash: limited endurance, high write power, very slow write speed, MLC & aggressive scaling leading to reduced performance and complicated controller
- Power consumption in both mobile and data center applications is now a real issue
  - Incorporating STT-RAM in mobile applications can dramatically reduce standby power
  - Replacing DRAM with STT-RAM in data centers can reduce power by up to 75%
- Memory performance is fast becoming the key bottleneck that limits system performance
  - Critical applications are becoming more data-centric, less compute-centric
  - Instant-on is becoming a requirement for many applications

## • These problems create an opening for an alternative, high-density, high-speed, non-volatile random access memory

© 2010 Grandis Corporation

### **STT-RAM versus Conventional MRAM**

**Pioneer in STT-RAM Technology** 

#### **Conventional MRAM Cell**



Write Current:  $I_{sw} \sim 1$  / Volume

 $I_{sw} \sim Volume$ 

#### Key Advantages over conventional MRAM:

- Excellent write selectivity
- **High scalability**
- Simpler architecture
- **Faster operation**

- Localized spin-injection within cell
- Write current scales down with cell size
- **Low power consumption** <— Low write current (<100  $\mu$ A)
  - No write line, no by-pass line and no cladding
  - Multibit (parallel) writing compatible <--

### **The Solution: STT-RAM**

- GRANDIS Pioneer in STT-RAM Technology
- STT-RAM is an evolution in magnetic storage from hard disk drives to solid-state semiconductor memory
  - Uses spin-polarized current ("spintronics") to write magnetic bits
  - Non-volatile, random-access memory with no moving parts
  - Key building block is the magnetic tunnel junction (MTJ)
  - MTJ is currently in high volume production as a Read sensor in HDD  $\square$

#### STT-RAM has all the characteristics of a universal memory

- Non-volatile
- Highly scalable
- Low power consumption
- SRAM read/write speed
- Unlimited endurance
- DRAM & Flash density (6 F<sup>2</sup>)
- Multi-level cell capability



## • STT-RAM uses existing CMOS technology with 2-3 additional masks and less than 3% cost adder

© 2010 Grandis Corporation

<--

# Pioneer in STT-RAM Technology

#### Critical Elements of the MTJ cell

- MTJ material and stack
- **MTJ** annealing
- **MTJ patterning**

Time and temp. to form max TMR, low  $\alpha$ , and high  $\eta$ <--

AFM pining, spin-injection, free layer properties

- <--Damage free stack & CD control
- Capping & post processing <--Damage free stack

#### **HDD Read Head Experience**

- Average 3 MTJ junctions per 1 HDD
- Over 5 billion MgO-MTJ's shipped
- Current density in MTJ exceeds 5  $MA/cm^2$  (STT writing current ~ 1 MA  $A/cm^2$ )
- Manufacturability, reliability and endurance of MgO-MTJ is proven



Gradulio Grandis Corporation

SEMATECH

9/23/2010

### **STT-RAM Technology Acceptance**



- Experts and major companies across the semiconductor industry now accept that STT-RAM is the leading next-generation memory solution
  - **ITRS 2009** roadmap includes STT-RAM table due to its closeness to production
  - Samsung, the world's largest memory manufacturer, publicly states that STT-RAM and PCM are the two viable next-generation memory technologies
  - **IBM** lists STT-RAM as a future storage class memory (in addition to PCM and RRAM)
  - Independent academic studies (e.g. from Carnegie Mellon University) show that STT-RAM is a viable technology even for replacing hard drives in the long term



Source: ITRS Roadmap for Semiconductors, Dec. 2009

#### STT-RAM leads all other memory technologies across the 8 ITRS key attributes



### **STT Write Mechanism**



#### • Spin-transfer torque writing

- Uses spin-polarized current instead of magnetic field to switch magnetization of storage layer
- Has low power consumption and excellent scalability







Graiding Grandis Corporation

#### SEMATECH

### **Intensified Development of STT-RAM**



- Nov. 2009: Korean Government updates on progress of \$50M STT-RAM program with **Samsung** and **Hynix**, installs 300 mm STT-RAM facility at Hanyang University
- **Dec. 2009: TSMC** and **Qualcomm** describe 45 nm low power embedded STT-RAM process and design at IEDM
- **Dec. 2009:** Also at IEDM, **Hitachi** & Tohoku University present MTJ SPICE model, and **Intel** presents design space study and requirements for STT-RAM in embedded applications
- **Dec. 2009:** France launches €4.2M SPIN project with 11 partners including LETI, Spintec & **Crocus**, one of project goals is to develop magnetic FPGAs
- **Feb. 2010: Toshiba** describes a 64 Mb STT-RAM using perpendicular MTJs and 65 nm CMOS at ISSCC conference
- **Apr. 2010: Everspin** takes MRAM to higher densities, begins sampling 16 Mb MRAM targeted at the aerospace, automotive, industrial and RAID storage markets, also continues to develop STT-RAM for future technology nodes
- **Jun. 2010:** Grandis, Hitachi and Fujitsu all present papers on STT-RAM at VLSI symposium covering STT-RAM thermal stability, scalability and MLC
- **Dec. 2010: Hynix** and **Grandis** to present joint paper on high-density STT-RAM chip operation at IEDM

© 2010 Grandis Corporation



HITACHI Inspire the Next









11

9/23/2010

### Standalone STT-RAM Product Roadmap





### **Embedded STT-RAM Product Roadmap**

- Initial applications: replace embedded non-volatile memory in industrial, medical, consumer and military microcontroller units
- STT-RAM is scalable alternative to existing MRAM solution



**Pioneer in STT-RAM Technology** 

### **STT-RAM Write Current Scalability**

- STT-RAM write current scales linearly with device area
- Confirmed experimentally over a wide range of device sizes
  - At 90 nm: write current ~150  $\mu$ A (device area ~0.013  $\mu$ m<sup>2</sup>)
  - At 45 nm: write current ~40  $\mu$ A (device area ~0.003  $\mu$ m<sup>2</sup>)



**Pioneer in STT-RAM Technology** 

### **STT-RAM Minimum Cell Size**



#### • 6 F<sup>2</sup> is standard minimum cell size with shared source line architecture

Minimum 1 F gate width transistor can drive 6 F<sup>2</sup> cell beyond 45 nm



• Vertical transistors, multi-level cells and/or cross-point architectures will enable further cell size reduction to 4 F<sup>2</sup> and beyond

### **STT-RAM Key Parameters and Challenges**

- **J**<sub>c0</sub> (write current density) => cell size, write speed
- **TMR (read signal)** => sense margin, read speed
- $\Delta$  (thermal stability) => data retention, read disturb, memory size, etc.
- **V**<sub>BD</sub> (MTJ breakdown voltage) => lifetime, endurance

#### Key challenge is achieving low STT write current density and high thermal stability at the same time

#### Write current:

$$I_{c0} = \frac{2\alpha AM_{s}t_{F}e}{\eta \hbar} \left[ H_{K} + \frac{H_{d}}{2} \right], \quad H_{K} = H_{Intrisic} + H_{shape} + \dots$$

#### **Thermal stability:**

$$\Delta = \frac{M_{S} H_{K} t_{F} A}{2k_{B}T} \propto \frac{M_{S}^{2} t_{F}^{2} A}{k_{B}T}$$

Assuming intrinsic anisotropy is much smaller than shape anisotropy

**STT-RAM Cell** 

Pioneer in STT-RAM Technology



### **STT-RAM Resistance Distribution**



- Large separation between resistance states and small process
  distribution provide excellent read characteristics
  - TMR (Tunneling Magnetoresistive) signal ~100%
  - $R_{low}$  distribution sigma 4% (1 $\sigma$ ),  $R_{high}$  distribution sigma 3% (1 $\sigma$ )
  - $R_{high} R_{low}$  separation =  $20\sigma$



### **STT-RAM Write Voltage Distribution**



#### • Mean write voltage ~1.15 V

- Includes voltage across both transistor and MTJ
- MTJ write voltage ~0.4 V
- Write voltage distribution ~3% (1σ) or ~9% (3σ)
  - Pulse width 50 ns
- Target write voltage distribution for STT-RAM products is <15% (3σ)</li>



### **STT-RAM Endurance**



 Unlimited write endurance (>10<sup>16</sup> cycles) projected from TDDB tests with stressed voltage and temperature

10<sup>13</sup> endurance demonstrated to date under real operating conditions



9/23/2010 19

### **Latest Developments**

- New class of in-plane MTJ structures with high partial perpendicular anisotropy excellent for maintaining thermal stability as devices shrink
  - Perpendicular anisotropy approaching 90% of  $4\pi M_s$  achieved
  - Slow drop with increasing free layer thickness excellent for scaling



### **MTJ Write Current Density (J**<sub>c0</sub>)

GRANDIS Pioneer in STT-RAM Technology

#### Average write current density J<sub>c0</sub> for advanced MTJs is 1–2 MA/cm<sup>2</sup>

- Advanced MTJ (Adv-BMTJ) devices with partial perpendicular anisotropy  $\sim 1-2$  MA/cm<sup>2</sup>
- Dual barrier MTJ (DMTJ) devices have lower and more symmetrical  $J_{c0} \sim 1$  MA/cm<sup>2</sup>



All  $J_{c0}$  data quoted by Grandis are obtained statistically by fitting write current vs device area data from thousands of MTJs over a wide range of device sizes

### **Achieving High TMR with DMTJ**





- High TMR can be achieved with DMTJ with reduced 2<sup>nd</sup> MgO barrier thickness
- High intrinsic TMR and larger MgO barrier asymmetry gives higher TMR

Grandig Grandis Corporation

SEMATECH

### **Effect of Partial Perpendicular Anisotropy on Switching Current**

Partial Perpendicular

Anisotropy Measured in FMR

and VSM

Improved Switching Current Measured in QSW

**Pioneer in STT-RAM Technology** 



➢ Grandis know-how resulted in obtaining films with High Partial Perpendicular Anisotropy (as measured by FMR and VSM)

Switching measurements confirm expected improvements in switching current

### Switching Current Scalability with FL Thickness



### **Grandis EXPERIMENTAL DATA confirms Jco scaling with FL thickness**



The graph above shows Jco scaling with free layer thicknesses for 2 different FL materials

- ➢ Both FL types show Jco proportional to FL thickness
- \* Each point on the graph is an average of  $\sim 100$  MTJ devices

© 2010 Grandis Corporation

### **Maintaining Thermal Stability**



#### • Several approaches to maintaining thermal stability of smaller devices:

- Increase MTJ aspect ratio (AR) but not applicable to P-STT-RAM
- Increase MTJ free layer thickness (t)
- Use innovative MTJ materials or processes



### Conclusions



#### • Spintronics (spin electronics) is a rapidly emerging field

- STT-RAM and spin logic will have a significant impact on technology in the 21st century, enabling a new era of instant-on, high-speed portable devices with extended battery life

#### • STT-RAM has a huge potential market as a universal, scalable memory

It can replace eSRAM & eFlash < 32 nm, DRAM < 28 nm, and ultimately replace NAND</li>
 Flash as a storage class memory at 22 nm and beyond

#### • Worldwide STT-RAM development has increased significantly

- Government programs in the US (DARPA), Korea, Japan, France, and Singapor
- IBM, Qualcomm, Intel, Micron, Everspin, TSMC, Hynix, Samsung, Renesas, Toshiba, Hitachi, Fujitsu, ...

#### • Grandis is focused on commercializing STT-RAM in 2–4 years

- Low MTJ write current density achieved, now the focus is on chip distributions and yield
- Characterization of thermal stability through read disturb and write error rates is critical
- In-plane STT-RAM with partial perpendicular anisotropy is scalable beyond 20 nm





### Acknowledgement:

Grandis colleagues: D. Apalkov, A. Driskill-Smith, D. Lottis, V. Nikitin, X. Tang, S. Watts, K. Moon and E. Chen

Work partially funded by NIST ATP grant, DARPA contract and NSF grants

### Please visit www.GrandisInc.com for more information

<--

# Pioneer in STT-RAM Technology

#### Critical Elements of the MTJ cell

- MTJ material and stack
- **MTJ** annealing
- **MTJ patterning**

Time and temp. to form max TMR, low  $\alpha$ , and high  $\eta$ <--

AFM pining, spin-injection, free layer properties

- <--Damage free stack & CD control
- Capping & post processing <--Damage free stack

#### **HDD Read Head Experience**

- Average 3 MTJ junctions per 1 HDD
- Over 5 billion MgO-MTJ's shipped
- Current density in MTJ exceeds 5  $MA/cm^2$  (STT writing current ~ 1 MA  $A/cm^2$ )
- Manufacturability, reliability and endurance of MgO-MTJ is proven



Gradulio Grandis Corporation

SEMATECH

9/23/2010