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Emerging MacroTechnology:
Flexible Displays

Reflective Emissive
Electrophoretic Displays Organic Light Emitting Displays
e Ultra-low power e Low power
e Sunlight readable e Vibrant full color TN
o Near-video rates & E-INK e Full motion video KRN kA I

GENERAL DYNAMICS

Strength on Your Side ™

Source: Flexible Display Center
at Arizona State University
http://flexdisplay.asu.edu
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Flexible Electronics as the
Enabling Platform Technology

Integrate flexible TFT backplanes with frontplanes of
different functionality to create new technology

Image-layer Frontplane Sensing-layer Frontplane
Flexible Displays Flexible Sensor Arrays

{l}ypm F|EXIb|e B|aSt
\ Dosimeters

Sensors for Environmental Threat Detection
and Human Health/Performance Monitoring
Images compliments of J. Wang ASU BDI
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Transformational Positioning

Macrotechnology > does not compete / replace Si-based devices --
instead complements in applications where Si CMOS is not well-suited
(new products, applications and markets)

Macrotechnology Unique Attributes:

e Less is not Moore! - not driven by transistor down-
scaling (performance), instead driven by unique
integrated functionality and form factor

e Bigger is Better! - large area (as well as small)
applications

e Be Flexible! - compact, ultra-thin, rugged, lightweight,
implantable, wearable, conformable, and (potentially)

Inflatable
spacecraft and
extra-terrestrial

habitats

Y, |
! /
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Flexible
Solar

Smart Skins

Vl\geal_'able _ o for Structural
evices 3 g N — \
FI?X]bIe - Opensrenms e Wil * He:altl:l
R dD.lgltal . Foldable Large Monitoring
clellefglelpiryy Area Antenna Building-integrated PV and SSL
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Key Manufacturing Challenges

©

Robust materials with

manufacturable e Encapsulated EO
processes on flexible e . .
backplanes Materials and Devices

12/

Manufacturable high quality
TFT materials within
substrate constraints

Backplane Electronics

an Impermeable Flexible

Manufacturing-ready Substrates
substrates: no “drop-in”
replacement for glass

Method for handling flexible Encapsulated Electro-optic (EO) Devices
substrates in display-scale integrated with an Active Matrix Backplane
automated manufacturing fabricated on a Flexible Substrate System
eqguipment
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Flexible Substrate Systems:
Down-selects and Challenges

No manufacturing-ready “drop-in” replacements for glass

Plastic (PEN, PES, PI)
Process T limit
Dimensional stability

Permeable to O,/H,0:
parrier layer(s)

N\

%

Plastic
I —

Metal Folil (SS)
e Limited flexibility
e Stress management

e Surface passivation:
planarization layer

AN

X
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Parallel Manufacturing Pathways

e Adapt existing plate-to-plate toolset infrastructure

Free-standing flexible substrates

Substrate fixturing / framing
Backside thinning: chemical etch or grind-polish
M Substrate temporary bonding — debonding
M Substrate coat - release
M Layer transfer

e Adopt Roll-to-Roll manufacturing infrastructure

Toolsets immature with significant issues —
handling, layer alignment, resolution, reliability

Metrology strategy undefined

M Take step-wise “R2R-compatible” approach
focusing on critical issues
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Manufacturing Protocol Options

Bond - Debond
FDC SEC LG-D ITRI PV

AR

=

Substrate bonded with
Temporary Adhesive
to Carrier

TFT Fabrication
130 - 180 °C

Triggered Debond:
Thermal
Solvent

Light
Mechanical

Coat — Laser Release
IBM Philips (EPLAR) PVI

P

R =
— —

Spin-coated Polyimide
on Carrier

R,

- __J

TFT Fabrication
280 - 300 °C

Laser Release:
Interfacial Melting

Layer Transfer
Seiko-Epson (SUFTLA)

e —

Sacrificial poly-Si
on Carrier

TFT Fabrication
300 - 380 °C

—

Temporary Substrate bonded
with Water-soluble Adhesive

W‘B

Laser Release: Ablation

— —J

Bond to Flex then release
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Capability/Limitation Comparison

Capability/Limitation

Flexible Substrate

Temp Bonding

High surface quality

polymer or metal

EPLaR

SUFTLA

Solution-castable

polymers (Pl, BCB) Any

Distortion

controlled to
neqgligible level !

foil
Substrate- Polymer- i
- TFT P:oceISf It dependent dependent b::glcﬂ::clj'lﬁfnsi;s
emperature LImit 1 4180 °c for HS-PEN) | (280 °C for PI)
Can be significant —
Flexible Substrate but can be Negligible Not applicable

Release Process

Rapid automated
dry

Laser interfacial

. Laser ablation
melting

Scale-ability

?
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Temporary Bonding — Debonding:
Manufacturing Challenges

e Temporary bonding with semiconductor-grade

adhesive (developed by Henkel with FTA funding and FDC pilot
line development)

v' Compatible with Si-based TFTs

v" Low total thickness variation (TTV)

v Defect (particle/bubble) free

v TFT and EO process flow and toolset compatible

e Automated de-bonding

v' Triggered release (thermal, radiation, chemical, mechanical)
v Residue-free

v TFT array and substrate (and carrier) damage-free

Complexity of component interactions requires system-level
substrate/barrier/adhesive/carrier/toolset solution
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Temporary Bonding Pitfalls

HS-PEN on Si

Blisters form at defect
(bubble, particles) sites

Exacerbated by
adhesive out-gassing at
temperature and in
vacuum

“Teacup” failure due to
CTE mismatch between
substrate and carrier

Adhesive visco-
elasticity also crucial
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Effect of Bow on TFT Array Quality
SS Substrates

3.8-in. QVGA EPD
Display Module

TFT Drive Current Array Maps
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and Process and Process defectivity
<0.01% point defects
0-3 line defects
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Low Temperature a-Si:H TFT
Process Challenges and Approach

Glass-based TFTs TFTs on Flex Lower quality
300-350 °C. Process ‘ 180 °C. Process ‘ active device

Temperatures Temperature materials
a-Si:H n* a-Si:H contacts
higher SiH,/SiH ratio = unactivated dopants =>»

higher p
Unstable interface =»
contact barrier
y

higher V, and lower p,,

o e e e e e e e e e e R e e o e i e i e e o ke e e e ke P e P it
o e e e e e e e e N e e e e e e e i e e i ke e e e ke P e o it

o e e e e e e e e R e e o e e e e i e e o ke e e e ke P e P it
o e e e e e e e e e e e N ot e e e e e et e e e ot e e o it P e o it s

a-SiN_:H

Identify new process ) j
gate dielectric

windows to achieve

equivalent or better higher charge trap density =»
performance greater AV, (stability degradation)

and greater hysteresis
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FDC 180 °C a-Si:H TFT Performance

30 || FDC 180°C Parameter FDC SEC
a-Si:H Process
Max. Process 180 °C 130°C | 370 °C
i 20 Temperature (flex) (flex) (glass)
-
— 10 Saturation
Mobility 0.8 0.5 0.5
% 4 8 12 16 20 (cm?/V-s)
Vps (V)
ON/OFF
] 2 x10° 1x108 | 4 x107
104 = Forward Sweep Ratio X X X
106 == Reverse Sweep /
= Hysteresis Dr- e C rrent
109 ve 30 1.2 4.0
< (uA)
5 107
- Threshold
10-12
L Voltage (V) 1.0 4.5 0.7
10-14
96 um /9 pm
-20 -10 0 10 20
Vs (V)

L P. Shin, USDC Flexible Displays Conference (2007)
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Plastic Processing Breakthrough:
Zero-distortion Process

300

230

200

150

100

Distortion (ppm)
on
(]

Distortion vs. Process Step

|

1Q 2008
Baseline
180 °C
Process

New
180 °C
Process

150 °C
Process

Lower Left

Lower Right

sD
Wia
Woly/ITO

Contact a-5i

Overglass

TFT pixels at 4 corners of 3.8-in QVGA
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HP Self-Aligned Imprint Lithography
Circumvents Distortion Issue
Large Area Nano-device Scaleable?

. Then undercut to remove from
| m p ri nt under thinnest parts of mask

Lithography:
Photomask-free

Process

Imprint polymer

SAIL TFT n+ Si contact
4 levels in 0.5 pm steps > Etching Process SiNx dielectric

Multiple mask levels
Imprinted as single 3D structure

O. Kwon, et al., IMID 2007, Daegu, ROK
Compliments of Carl Taussig

Plastic substrate

[éﬁ I HP SAIlL-fabricated AM-EPD
on FDC thin film stack on HS-PEN

imwvent
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Path to Reliable Higher Performance
Advanced TFT Technology

CHALLENGE:

e a-Si:H inherently unstable in current-driven devices

e poly-Si a costly solution on glass and problematic on flex

e Organic TFTs unsuitable: poor performance and instability

e CNTs alonger-range opportunity: purity and manufacturability

APPROACH:
Seek stable high performance TFT technologies
compatible with existing a-Si:H manufacturing infrastructure

Nanocrystalline Si (nc-Si)

Current stressed TFT stabiliey  TF Wil = 20

1
0. .’j =-5ITET
1]

[ - Y
| et - - ’ L {
| ; ‘ GCIF

3.5-in

Shift{\y
o o

o 76 160 225 300 376 460 £26 600 476 FBO
Stiess Time ihrs)

C— 1¥m
ER_AREW. 520, 000 Lews

Samsung Electronics, JSID 15/2, 113-118 (2007)
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(Some) Oxide TFT Options

Fundamental
understanding of key
materials, device and

process issues crucial to
best engineered solutions
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Barrier/Encapsulation Reguirements

Moisture/Oxygen Permeability (Transmission Rate)

Light Emitting Polymer
Hole Injector
gansparent ANnode HZO(WVTR)
Ultra High Barrier low 10¢ g/m?/day
0, (OTR)

Ultra High Barrier < 10 cc/m?/day

Thermo-mechanical stability Optical Transmission
!

R ~ Light Emigtigg Polymer
ﬂ Hole [njector
A ansparent Anode

Sh"nkage Ultra High Barrier

<20 ppm/hr @150°C
i
CTE Reduction / Stress Balance Bendlng

diameter <1” Ultra High Barrier
oo
>4B
> 80%T

Courtesy of GE Global Research
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Vitex Multilayer Barix™ Approach

Inorganic
barrier layers

3-7 diads

(polymer-

inorganic
pairs)

-4
SEPARATOR

Polymer layers
provide
planarization
and conformal
’ coverage of

defects
VITEX

% Transmission

Barix Transparency on PET substrate

100

-

A

—

a——

a”fc

ao

= PET
= FG500

20

20

350

450

B 650
Wavelength, nm

Effectiveness of

multi-layer

approach attributed

to isolation of
defects and

enhanced diffusion

length
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Direct Observation of Water
Distribution in Barrier Films

X-ray Reflectivity (XR)

Water ‘looks’ like polymer
(similar density)

e Measure thickness change due to
moisture absorption

e Mass density profile

e Estimate permeation rate

Vogt et al., J. Appl. Phys. 97, 114509 (2005)

Neutron Reflectivity (NR)

Water visible
(Heavy water)

e |sotopic sensitivity (*H vs. ?H)
e Measure water distribution within film

1.0 4

0.8

0.6 1

0.4 5

0.2

0.0 =

|
1]

| ! |
40 g0
Distance (&)

120

Water

concentrated at

interface
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Proposed Mechanism for H,O Transport

AlLO,

polymer

Moisture permeation is dominated by defects
Water transport retarded by oxide/polymer interface
» Water adsorbs at interface
» Internal desiccant effect
Leads to long lag times
Equilibrium behavior not important if lag time > lifetime

Potential paradigm shift in design of nanao-engineered barriers

Vogt et al., J. Appl. Phys. 97, 114509 (2005)
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Transparent Conductors:
ITO replacement

Flexibility

<40 Ohm/sq Conductivity Transparency > 90 %T
Options TEM of
. CNT Film
v Conductive polymers Source: Eikos
v' CNT films
v IMI composites
Silver Dielectric ITO
~ ‘7 TiO,
Nb205 [ ]
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Product Pull vs. Technology Push

INEMI Flexible Electronics Roadmap 2009 listed
“slow pace of product development”
as a “showstopper” !

Recent NSF and ONR co-funded
Working Group commissioned to assess the global
competition in Flexible Electronics recommended
establishment of application-driven center-level efforts
In the U.S.
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Center for Ubiquitous
MacroTechnology (CUbig-M)

An NSF Engineering
Research Center Concept
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Vision

The Center for Ubiquitous MacroTechnology will demonstrate large-area
flexible electronics (MacroTechnology) as a transformative tool for a broad
range of new high-value applications and industries. The worldwide
electronics industry has generated tremendous economic and societal impact
despite severe design limitations: with few exceptions, electronic products are
small, rigid, fragile, opaque and incompatible with living tissue. CUbig-M
proposes engineered systems-driven research to liberate electronics from these
arbitrary constraints. CUbig-M’s vision is that a new wave of ultra-thin,
lightweight, flexible, conformable, rugged, biocompatible, self-healing and
transparent MacroTechnology products will provide transformative solutions
for critical national problems in healthcare, safety, security, sustainability and
beyond. These new products will catalyze economic growth and global
competitiveness.
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Toward Ubiquitous MacroTechnology for
Human Health, Safety, Security,

Performance, Education and Beyond

‘Technology Transition
& Commarelalization

System Design, Integration, il Barriers / Gaps

Implementation, Evaluation & Improvement ' System design tou:-ls;’::"
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J— ey
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Frontplane S&T pErformance under

siress
Integration &
Manufacturing Scienc

o il

Enowledge Base ¥

Fundsmental model=:,
devices and
processes

Fundamental Challsnges

ERC
Strategic
Plan
Design

AVS Thin Film Users Group/VIEeuRapAUG USR0S




Exemplary Technology Demonstrations

Wound Care / Avoidance Critical Infrastructure Monitoring Smart Spaces / Buildings
“Smart” Bandages and Smart Conformable Skins Enabling Technologies
Implantable Films e Strain field sensing arrays e Large area building-integrated PV/SSL
« Electronic stimulation « Visual read-out / indicators » Surface-embedded unobtrusive sensor net
« Diagnostic sensors e Wireless interrogation + human activity (security and health)
e Internal or external surfaces + environmental conditions (health)

e Controlled drug release
e Wireless interrogation
* Self-powered

e Actuator-control and decision systems
e Surface-embedded “edge-to-edge” HCls

Demonstration [1: Demonstration 111
Infrastructure-
integrated for

Security / Safety

Demonstration I:
In-body/on-body
for Human Health

Building-integrated
for Human
Performance

Engineered Biosensing & drug delivery Mech sensing & actuation
Systems Stretchable / compliant Low deformation / rollable
Biocompatible / soft Rugged / durable

Sensing — human interfaces
Conformable / “seamless”
Surface-durable / stable
Small to large area

Small area Small to human-scale area
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Summary

e Flexible Displays and MacroTechnology hold great promise for
new products of unique from, fit and function for military, health,
security, energy and the environment, and space applications

e Opportunities for breakthroughs and advances

v" Manufacturing processes
v Devices (TFT backplanes and functional frontplanes)
v' Materials

e Specific Challenges and Gaps
v Scale-ability > scaling laws, limitations and tradeoffs
v Stable high performance TFT technology for OLEDs and beyond
v" High performance low cost flexible barrier / encapsulation technology
v' Product focus as the technology driver
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For Further Information

Flexible Display Center NSF ERC Proposal effort
e Dr. Nick Colaneri, e Prof. Greg Raupp
Director e raupp@asu.edu

e nick.colaneri@asu.edu e 480-727-8752
e 480-727-8971
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Thanks to the FDC Team
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Thank You !
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