

Biosensor Applications

- Lab-on-a-chip
- Cancer diagnostics
- Wide range of biomedical needs in diagnostics
- Pathogen detection
- Environmental monitoring (water quality for example)
- Food quality testing

Example of SiNW in Biosensing

Detection of protein binding using a silicon nanowire device. (A) SiNW modified with biotin (left) and after streptavidin binding (right). (B) Conductance vs. time for biotin modified SiNW. 1, 2, and 3 correspond to regions of buffer solution, addition of 250 nM streptavidin and pure buffer solution respectively. (C) Conductance vs. time for unmodified nanowire. 1 and 2 have the same meaning as before. (D) Conductance vs. time for an biotinmodified NW. Region 1 is same as before and region 2 represents addition of 250 nM sreptavidin pre-incubated with biotin. (E) Conductance vs. time for a biotin modified NW. Region 1 as before, region 2 represents 25 pM streptavidin and regime ber fer solution. Univar

The signal can be amplified with metal ion mediator oxidation catalyzed by Guanine.

Ν

$$\frac{dN}{dt} = k_f (N_o - N) \rho_s - k_r^N$$

- N_o: initial density of probes on the nanowire surface

- k_f , and k_r : rate constants for attachment and detachment

- ρ_s : density of the targets
- The first term on the right hand side represents the targetprobe $+ V \nabla \rho = D \nabla^2 \rho$ conjugation and the second term stands for indeterminent 2006 events.

• Trade-off between the response time and detection limit

- If you want femtomolar detection, incubation would

take

Gas/Vapor Sensors in Biomedical Applications

 Some diseases have specific markers which show up in

excess concentration in the breath of sick people relative

to normal people.

Example: acetone in diabetes patients NO in asthma patients

 In these cases, simple chemical sensors with pattern

SWCNT Chemiresistor

- Easy production using simple microfabrication
- 2 Terminal I-V measurement
- Low energy barrier Room temperature sensing
- Low power consumption: $50-100 \,\mu$ W/sensor

Processing Steps

- 1. Interdigited microscale electrode device fabrication
- 2. Disperse purified nanotubes in DMF (dimethyl formamide)
- 3. Solution casting of CNTs across the electrodes

Jing Li et al., Nano Lett., 3, 929 (2003)

SWCNT Sensor Testing

- Test condition: Flow rate: 400 ml/min Temperature: 23 °C Purge gas: N₂ & Carrier gas: Air
- Measure response to various concentrations, plot conductance change vs. concentration
- Sensor recovery can be speeded up
 - by exposing to UV light, heating

or

' hiac

Gases/Vapors Tested

Analyte	Sensitivity/Detection limit
CH4	1ppm in air
Hydrazine	N/A
NO2	4.6ppb in air
NH3	0.5ppm in air
SO2	25ppm in air
HC1	5ppm in air
Formaldehyde	10ppb in N2/air
Acetone	10ppm in air
Benzene	20ppm in air
C12	10ppm in N2
HCN	10ppm in N2
Malathion	open bottle in air
Diazinon	open bottle in air
Toluene	1ppm in air
Nitrotoluene	256ppb in N2
H2O2	3.7ppm in air

4. Sensor can be "refreshed" using UV LED, heating or purging

Scalable Array Approach (Multi-channel Sensing Chip)

- 12 to 96 sensing elements on a chip (1cm x 1cm) with heaters and thermistors.
- Number of sensing elements can be increased on a chip.
- Number of chips can be increased on a 4" wafer.
- Wafer size can be increased to 6", 8", or 12".
- SWCNT solution-casting by ink jetting or using microarrays

Features:

- Response time in seconds
- ppm/ppb detection levels
- Multichannel chip provides high sensitivity/multifunctions
- Integrated Temperature, Pressure, and Humidity sensing
- Integrated signal processing
- Low power demand (50 mW including all operations)
- Low cost microfabrication

