Designing Nanomaterials for Energy Conversion and Storage

Yi Cui

Department of Materials Science and Engineering & Geballe Laboratory for Advanced Materials Stanford University

1. Nanowire Energy Storage

C. K. Chan and Y. Cui, *Nature Nanotechnology* 3, 31 (2008).

- C. K. Chan and Y. Cui, Nano Letters 7, 490 (2007).
- C. K. Chan and Y. Cui, *Nano Letters* 8, 307 (2007).
- D.-K Kim, Y. Yang and Y. Cui, Nano Letters (ASAP,2008).
- L. Cui and Y. Cui, Nano Letter (2009).
- R. Ruffo, C. Wessels and Y. Cui Electrochemistry Communication (2009)

Energy Storage

Portable Electronics

Hybrid, Plug-in, Electrical Vehicles 25-30% CO₂ emission

Renewable Energy and Electric Grid Building Storage

Comparison of Energy Storage Technologies

Important parameters:

- Energy density (Energy per weight or volume)
- Power density (Power per weight or volume)
- Cycle life and safety
- Cost

Lithium battery has the highest energy density among all the batteries.

J.-M. Tarascon & M. Armand. Nature. 414, 359 (2001).

Li Ion Battery 101

Electrode Materials in Existing Li Ion Batteries

Electrode materials determine the energy density.

Anode materials

Graphite: 370 mAh/g

Cathode Materials

LiCoO ₂	3.7 V	150 mAh/g	560 Wh/kg
LiMn ₂ O ₄	4.0 V	140 mAh/g	560 Wh/kg
LiFePO ₄	3.3 V	170 mAh/g	561 Wh/kg

Energy Density and Price of Li Ion Batteries

- Improvement only 8% per year, saturating now.
- New electrode materials are needed.

Two Types of Electrode Materials

Existing Technology: Intercalation Materials

Advantages

- Li Intercalation mechanism
- Small structure change
- Fast Li moving rate

Disadvantages

-Small capacity

Future Technology: New Materials

Advantages

- Li displacement/alloying reaction
- Large capacity

Disadvantages

- Large structure change
- Slower Li moving rate

Our Nanowire Battery Approach

Good contact with current collector

Example: Si as Anode Materials

C anode: the existing anode technology.

$$C_6 \leftrightarrow LiC_6$$

Theoretical capacity: 372 mA h/g Less than 10% volume expansion.

Si anode

Si
$$\longleftrightarrow$$
 Li_{4.4}Si

Theoretical capacity: 4200 mA h/g

Problem for Si: 400% volume expansion.

Vapor-Liquid-Solid (VLS) Growth of Si Nanowires

Au Nanoparticles: Scanning Electron Micrograph

Si Nanowires Scanning Electron Micrograph

Nanowire Battery Testing

Pouch Cell

Ultrahigh Capacity Si Nanowire Anodes

Ultrahigh Capacity Si Nanowire Anodes

- Si nanowires show 10 times higher capacity than the existing carbon anodes.
- Si nanowires show much better cycle life than the bulk, particle and thin film. C. K. Chan, R. Huggins, Y. Cui and co-workers *Nature Nanotechnology* 3, 31 (2008)

C. K. Chan, R. Huggins, Y. Cui and co-workers Nature Nanotechnology 3, 31 (2008)

Cyclic Test Data @ C/5 rate

95% of capacity is retained after 185 cycles.

Diameter Change of Si Nanowire Anodes

Before

Electrochemical Potential Spectroscopy

Crystalline-Amorphous Core-Shell Si Nanowire

L. Cui and Y. Cui, Nano Letters (2009).

- Mechanical breaking problem is solved using Si nanowires.
- Only metallurgical grade Si (not solar grade) is needed. There is plenty of Si available.
- Mature semiconductor processing can be used for manufacturing.
- Safety: Si is safer.
- Si has a little bit higher charging potential (0.1-.0.2V) than C (~0V). This prevents lithium dendrite formation.
- -When Si burns, it produces sand. When C burns, it produces CO2 gas.

New Cathode Nanowire Materials

LiMn2O4 nanowires perform better.

D. Kim, Y. Yang, Y. Cui, Nano Letter (2008)

Aqueous Lithium Ion Batteries

2. Nanowire, Nanopillars and Nanocones as Solar Cell Components

- J.-Y. Lee, S. T. Connor, Y. Cui, P. Peumans Nano Lett. 8, 689-692 (2008).
- C.-M. Hsu, S. T. Connor, M. Tang, Y. Cui Appl. Phy. Lett. 93, 133109 (2008).
- J. Zhu, Y. Cui and coworkers Nano Lett. (2009).

Metal Nanowire Mesh Transparent Electrodes

Transparent conducting electrodes

Current Technology

- Sputtering: high cost for large area
- Brittleness when bent.
- Damage to absorber layer (if it is organics)

Carbon nanotube transparent electrodes

(Rinzler, Baughman, Gruner, McGehee)

- Coexistence of metallic and semiconducting tubes

Metal nanowire transparent electrodes

Simulation of Metal Nanowire Grating

J.-Y. Lee, S. T. Connor, Y. Cui, P. Peumans Nano Lett. 8, 689-692 (2008).

Ag Nanowire Networks

(Synthesis procedure: Y. Xia, P. Yang)

Length: 5-20 μm Diameter: 40-150 nm

Nanowire networks perform as well as or better than ITO.

Nanocones for Enhanced Light Absorption

Absorber layer and anti-reflection

Combine absorber and anti-reflection layers together.

Langmuir-Blodgett Deposition of Silica Nanospheres

Wafer-Scale Coverage of Monolayer Closepacked Particles

C.-M. Hsu, S. T. Connor, M. Tang, Y. Cui Appl. Phy. Lett. 93, 133109 (2008).

Si Nanocones

C.-M. Hsu, S. T. Connor, M. Tang, Y. Cui Appl. Phy. Lett. 93, 133109 (2008).

Amorphous Si Nanocones

J. Zhu, Y. Cui and coworkers Nano Lett. (submitted, 2008).

"Black" Amorphous Si Nanocones

