INNOVATION ONE

Thin Film Users Group: Alternative Energy Symposium

Sponsored by

JM Energy's Lithium Ion Capacitor:

The Hybrid Energy Storage Advantage

Outline

- 1. Introduction to: JSR Corp, JSR Micro Inc, JM Energy.
- 2. Lithium Ion Capacitor: Concept, Features, Assembly, Applications.
- 3. Performance Characteristics.
- 4. Safety.
- 5. LIC Packs and Modules
- 6. Reliability.
- 7. Improvement Plans
- 8. Summary.

JSR Corp, Overview

- JSR Corp, was founded in 1957, HQ in Tokyo, Japan
- Annual revenues of over \$4.2 billion.
- 5,122 employees
- Major Facilities:
 - > Japan: Yokkaichi, Yamanashi, Kyushu, Tsukuba, Chiba and Kashima
 - > US: Sunnyvale, CA
 - > Europe: Leuven, Belgium
- Major Subsidiary Companies:
 - > JM Energy, dedicated to the development and production of Lithium Ion Capacitors.
 - > JSR Micro Inc, the US division of JSR Corp.
 - ✓ Distributor for JM Energy and all JSR Corp products.
 - > JSR Micro NV, the European division of JSR Corp.

JM Energy's New HQ and Production Plant

- JM Energy's Yamanashi HQ plant.
 - Construction completed in October 2008; production started in January 2009
 - Investment: \$18.9 million
- Production Capacity.
 - January 2009 300K cells/year
 - > 2009 600K cells/year
 - > 2010 1.2 million cells/year
 - > 2011 2.4 million cells/year

LIC Performance Overview

Highly reliable, safe, high power, and high energy density capacitor About 4 times higher energy density than conventional EDLC, More than 2 times higher power density than conventional secondary batteries.

5

JSR MICRO CONFIDENTIAL

Lithium-ion Capacitor

Li-doped Electrolyte Activated Carbon Carbon

- Hybrid construction summary:
 - > The activated carbon cathode is a capacitor cathode.
 - ✓ In a Lithium Ion Battery thermal runaway occurs at the cathode when the Li spinel decomposes and reacts with the electrolyte.
 - Since LIC has an activated carbon cathode, thermal runaway will not occur.
 - The Li-doped carbon anode is a battery anode, undergoing Li doping during charge and de-doping during discharge
 - > The electrolyte contains a Li salt and is a battery electrolyte.
- Hybrid construction creates a capacitor which yields the best performance features of batteries and capacitors

LIC vs. EDLC: Capacitance Comparison

SR Micro JSR

- For EDLC the anode and cathode potentials change symmetrically and the maximum cell voltage is 2.5 to 2.7v.
- For LIC the anode's potential stays almost constant due to the lithium doping and the maximum cell voltage is 3.8v

Hybrid Performance Advantages

Battery-Like Advantages

>High Energy Density

14-15 Wh/kg

>High Voltage

3.8v to 2.2v discharge range
When connected in series, 1/3 fewer LIC cells are needed compared to a conventional EDLC supercapacitor

>Low Self-Discharge Rate

Will hold 95% of its charge after 3 months

Capacitor-Like Advantages

Safety: No Thermal Runaway

✓ Since the cathode does not contain Li spinel, thermal runaway cannot occur

>High Power Density

>1000 W/kg

>Can be charged/discharged quickly.
>High Reliability

Estimated life is 1 million charge/discharge cycles

➤Wide Temperature Range
✓-20°C to 70°C

Assembly of Laminated LIC Cell

SR Micro JSR

Schematic figure of Li pre-doping

SR Micro JSR

Li⁺ Pre-dope start after electrolyte is impregnated

Features of JM Energy's-LIC

Environmentally friendly materials

C, Al, Cu, Li

High performance High energy density High Voltage

Key technology: Lithium pre-doping Electrode/cell design

Mass- producible (Conventional mass production technology is applicable) Highly reliable (Less degradation of positive electrode) Less self discharge Long life

Energy generation & storage

Wind Turbine

icro JSR

Solar Cells LED Display

Transportation

Trains/Trams Cars Buses/Trucks Airplanes

UPS

Voltage sag compensation Bridge power

Medical Equipment

CT, MRI, etc.

Industrial Machines Forklift

Power shovel Cranes AGV

LIC Performance Overview

Highly reliable, safe, high power, and high energy density capacitor About 4 times higher energy density than conventional EDLC, More than 2 times higher power density than conventional secondary batteries.

Advantage of LIC against EDLC

	JM Energy - LIC	EDLC
	JM	
Capacitance (F)	2000	2000
Volume (mL)	124	373
Weight (g)	208	400
Internal resistance (mΩ)	1.4	0.4
Max operation voltage (V)	3.8	2.7
Volume Energy density (Wh/L)	2 5	5
Weight Energy density (Wh/kg)	14	4.5

LIC Cell Performance (1000F, 2000F)

Measurement Items		Unit	1000F	2000F	2000F	Conditions	
		0	Standard	Standard	Low -resistance		
Operatii	ng Temp	Range	С	<u>- 20 ~ + 70</u>	<u>- 20 ~ + 70</u>	<u>- 20 ~ + 70</u>	
Rated V	oltago	Max _	V	3.8	3.8	3.8	
Nateu v	onage	Min	V	2.2	2.2	2.2	
		Capacitance	F	1100±100	2200±200	2200±200	10CA, C.C. Discharge
		DC-IR	mohm	4.5±0.6	2.3±0.3	1.4±0.3	at 25°C
T • 4 • 1		ESR	mohm	2.8±0.6	1.4±0.3	1.0±0.3	1kHz
Initial Properti	es	Energy Density (weight)	Wh/kg	12	14	11	10CA, C.C. Discharge
		Energy Density (Volume)	Wh/L	21	25	19	at 25°C
Temp.	-20°C	Capacitance	F	850±150	1700±300	1700±300	
-	-20°C	DC-IR	mohm	46±6	23±3	19±3	10CA,
Depend 7000	Capacitance	F	1150±150	2300±200	2300±200	C.C. Discharge	
ence	70℃	DC-IR	mohm	2.4±0.8	1.4±0.3	0.8±0.3	
High Te	mp.	Capacitance	F	1000±150	2000±300	2000±300	3.9 70 $- 1000$ h
Load Life		DC-IR	mohm	5.0±0.8	2.6±0.4	1.6±0.4	3.8V, 70℃, 1000h
Cycle Test		Capacitance	F	1000±150	2000±300	2000±300	100CA at 25°C,
Performance		DC-IR	mohm	5.0±0.8	2.6±0.4	1.6±0.4	100k Cycle
Self Discharge		Voltago Dror	e Drop %	<1%	<1%	<1%	24h at 25°C
		Voltage Drop		<5%	<5%	<5%	3 Month at 25°C
Cell Dimension		mm	138×106×5	138×106×9	138×106×11	Active Size	
Cell Wei	ght		g	113±4	208±4	270±6	

JSR Micro JSR

			Unit	350F	500F	Condition	
Operating Temperature Range		C	-20° ~ 70°	-20° ~ 70°			
	perature	-	_				
Rated Voltage		Maximum	V	3.8V	3.8V		
hatoa voltago		Minimum	V	2.2V	2.2V		
		Capacitance	F	370F	550F	10CA constant current discharge at 25°C	
		ESR	mΩ	5.6	3.9	1kHz	
		DC-IR	mΩ	10.4	7.5		
Initial Property		Energy Density by Weight	Wh/kg	15	15	100 A constant surrant discharge at 25°	
		Energy Density by Volume	Wh/L	26	26	10CA constant current discharge at 25°C	
Capacitanco	-20°	from 25°	%	75	75	10CA constant current discharge	
Capacitance 70°		from 25°	%	105	105	10CA constant current discharge	
Heat Resistance fro		from Initial	%	90	90	3.8V, 70°C, 100 h	
Cycle Test Performance		from Initial	%	90	90	100CA constant current discharge 25°C、100K Cycles	
Self Discharge ΔVoltage		ΔVoltage	%	< 5	< 5	3 months at 25°C	
Dimensions Conve		Convex	mm	52×66×6.5	52×66×9.0		

Cell Dimensions (2000F, 1000F)

Cell thickness: 2000F Low Resistance 10.5 ± 1.0mm

2000F Standard 8.5 ± 1.0mm

1000F Standard 5.0 ± 1.0mm

JSR MICRO CONFIDENTIAL

Cell Dimensions (350F, 500F)

SR Micro JSR

Ragone Plots (Volume), 2000F

JSR MICRO CONFIDENTIAL

Discharge Curve (2000F, Standard Type)

ISR Micro JSR

Temperature Dependence (2000F)

Cycle Test Performance (2000F, Standard Type)

Self Discharge Performance, (2000F, Standard type)

licro JSR

Thermal Runaway Model of Li-ion Battery

Composition of Electrodes

Negative	Positive
Electrode	Electrode
Carbon	LiCoO ₂ ,
Material	LiMn ₂ O ₄ , etc

Time

Thermal runaway cannot be stopped once decomposition of the lithium spinel in the cathode occurs.

Thermal Stability Model of JME-LIC

SR Micro JSR

No thermal chain reaction occurs, since the positive electrode does not contain any lithium spinel.

Safety Test of LIC Cells

SR Micro JSR

Summary of Safety Test

Items	Test Methods	Test Results		
Items	i est methous	Fire	Explosion	
Over Charge Test	Charge up to 250% of rated capacitance with 1A constant current	pass	pass	
Over Discharge Test	Discharge to 0V with 1A constant current	pass	pass	
Heat Test	Heat by 5C/min and kept at 130C×1h	pass	pass	
Nail Test	Vertical penetration by a nail of 2.5mm Φ through the center of the cell	pass	pass	

Equivalent Lithium Content

- Due to its low lithium content, LIC is not subject to the Class 9 transportation regulations.
- The equivalent lithium ion content of the 2000F cell is less than 0.30 grams.
- The equivalent lithium content is calculated in grams by multiplying the capacity in ampere hours by 0.3
 - > The capacity of the 2200F cell is 0.980Ah.
 - > $0.980 \ge 0.3 = 0.294$

LIC Pack and Module Advantages

- Due to their higher energy density and voltage, LIC's provide a smaller, lighter power supply.
- The number of cells is reduced by 33%.
- The weight of the cells is reduced by 66%.
- The volume of the cells is reduced by 78%.
- The low self-discharge rate also provides faster start-up.
 - At room temperature, the cells will retain more than 95% of their charge for 3 months.

Welded Packs of LICs

- Multiple cell packs:
 - The lead terminal of the LIC cell is combined together in series by ultrasonic welding to get high voltage as a pack.
 - > Standard pack sizes are 4, 7 or 12 cells in series; 15.2v, 26.6v or 45.6v.

Prototype Modules (4 cells, 7 cells)

10 and 12 Cell Modules

1000F×10 cells

(Commercial Module)

2000F×12 cells

(Test Module)

Inside a 12 Cell Prototype

Examples of Open LIC Modules

1000F×4 cells (Open module, with no control circuit)

1000F×12 cells (Open module, with no control circuit)

Estimated Life at 30°C (1100F, Capacitance)

Capacitance Change

Sift Factor: 0.25 $10^{0.25} = 1.7783$

Ret. of Capo	70°C [h]	60°C [h]	30°C [h]	30°C [Year]
C(90%)	1184	2106	11841	1.4
C(85%)	3172	5642	31725	3.6
C(80%)	9023	16045	90229	10.3
C(78.2%)	13358	23754	133581	15.2
C(75%)	27454	48820	274536	31.3

Estimated Life at 30°C (1100F, DC-IR)

DC-IR Change

Sift Factor: 0.425 $10^{0.425} = 2.661$

DC-IR Change	70°C [h]	60°C [h]	30°C [h]	30℃ [Year]
R(+10%)	1219	3244	61097	7.0
R(+15%)	2110	5615	105768	12.1
R(+17.1%)	2639	7021	132246	15.1
R(+20%)	3569	9496	178874	20.4

Performance Improvement Plans

- 1. Improvement of Internal Resistance (within 1 year) Target: less than $1m\Omega$ at Room temp. less than 5 times at -20°C compared to R. T.
- 2. Improvement of Energy Density (within 1-2 year) Target: First step; 20wh/kg (within 1 year) Second step; 30h/kg(within 2 year)
- 3. Development of Higher Capacitance Cell. Target: 3000F, prototypes in mid-2009.

Summary

- Lithium Ion Capacitor is a hybrid energy storage device.
 - > It combines the best features of batteries and capacitors.
- LIC's energy density is 4 times greater than a conventional EDLC and its maximum voltage is 3.8 volts.
- LIC is a safe, reliable and has a very low self-discharge rate.
- Due to its higher energy and compact size it provides a smaller, lighter power supply.
- High volume manufacturing started in January 2009.
- Higher performance and capacity products are being developed.