A Non Volatile MEMS Switch for Harsh Environment Memory Applications

CAVENDISH KINETICS

Vikram Joshi, Charles Smith, Roberto Gaddi, Damian Lacey, Toshi Nagata, Mickael Renault, Anartz Unamuno, Rob van Kampen, Richard Knipe, and Dennis Yost

> Cavendish Kinetics Inc. 3833 North 1st street San Jose, CA, 95134

- Introduction to Cavendish Kinetics
 - ➤ NanoMechTM technology
- MEMS cantilever memory switch
- The cavity
- Harsh environment rocker memory design

Harsh memory temperature performance

- > Harsh memory radiation performance
- Other applications
- Conclusion

- Introduction to Cavendish Kinetics
 - > NanoMech[™] technology
- MEMS cantilever memory switch
- The cavity
- Harsh environment rocker memory design
 - Harsh memory temperature performance
- Harsh memory radiation performance
- Other applications
- Conclusion

Cavendish Kinetics Building MEMS Electronics

Mission: Enable our Customer to Deliver Breakthrough Products

- How: Enable integration of devices and sensors with CMOS
- *Results:* Lower cost, lower power and smaller size
- Means: Standard semiconductor processing technology
- NanoMech[™] Technology Platform 3rd Generation MEMS
 - Fully integrated into the back end process flow
 - No unique equipment or materials or packaging
 - Capability of delivering <u>multiple applications</u> on the same IC
- ♦ NanoMech[™] Memory
 - Volatile and Non-Volatile Switch Technology
 - Demonstrated Extreme Harsh Operation

Evolution of MEMS Technology 3 Generations of Evolution

Gen2: Package in Package

Gen3: Fully Integrated No Package

Small, Integrated, Low Cost Scale-able

Gen3 Enables MEMS Performance, But Delivers CMOS Size and Costs

Core Technology: 3rd Gen MEMS

- CMOS Compatible, Packaging Free MEMS platform
- Uses only Standard CMOS interconnect Process Technology
- Mechanical Platform (MEMS) is capable of producing a wide variety of applications

Integrates into Standard Flow

Both Integrated together into Standard CMOS

- Introduction to Cavendish Kinetics
 NanoMechTM technology
- MEMS cantilever memory switch
- The cavity
- Harsh environment rocker memory design
 - Harsh memory temperature performance
- Harsh memory radiation performance
- Other applications
- Conclusion

Anatomy of a CK Switch Utilize Stiction

Design AttributesNonvolatile: $F_o < F_a$, F_v Volatile: $F_a < F_o < F_v$ Sen

Sensor: $F_a = F_o < F_v$

Key features

- ✓ Can tune the restoring force without a process change
- Can tune for volatile or non-volatile behavior
- Digital sensing (contact either open or closed)
- ✓ Native or higher voltage programming as required
- ✓ High Endurance contact cycles demonstrated
- ✓ Fast response time in the sub 100 nanosecond range
- ✓ Environmental Superiority: Operates -150°C to 300°C and Radiation Hard
- ✓ Natural frequencies in the 75Mhz range

Simple Concept, Broad Applications

Cantilever uses adhesion to make NVM

Material System Fatigue Completed on Traditional Cantilever

No Demonstration of Fatigue in Material System

- Acknowledgements
- Introduction to Cavendish Kinetics
 CMOS compatible MEMS cantilever
- MEMS cantilever memory switch
- The cavity
- Harsh environment rocker memory design
 - Harsh memory temperature performance
- Harsh memory radiation performance
- Other applications
- Conclusion

NanoMech Technology Each Device is in Own Cavity

Each component is sealed in a cavity

- Characteristics:
 - High isolation & high density
 - Standard fab materials and processes
 - Sealing during production lowers cost
 - Variable cavity and array sizes to fit applications
 - Connections through Lower Metals, and Metal Roof
 - Demonstrated WLR Performance of Cavity and Device
 - Temp Cycle, High Temp Storage, Thermal Shock, Unbiased Autoclave

Robust Cavity and Robust Architecture

Sealed cavities used individually or built into arrays

Can combine multiple devices in single cavity

Wafer Level Reliability Performance of Cavity & Structure

Test	Conditions	Release	Status
7-alloy (7A)	Cycle from 25°C to 400°C to 25°C, N2 purge, 50 min. dwell	7 cycles	 Only minor parametric drifts over cycles
Thermal Cycling (TC)	Air-air Cycling, -65°C to 150°C	100 cycles	 Only minor parametric drifts over cycles
High Temperature Storage (HTS)	T=250°C, N2 purge, storage, interim tests every 150 hours	1000 hours	Only minor parametric drifts over time
Thermal Shock (TSK)	Liquid-liquid Shock, -55°C to 150°C, wafer sample	100 cycles	Only minor parametric drifts over cycles
Unbiased Autoclave (UA)	T=125°C, 100% RH, 2 atm pressure	96 hours	 Only minor parametric drifts over time

- Wafer Level Tests of Integrated MEMS Technology
- Minor < 5% Shift (7Alloy), Typically < 2% all Others</p>

Environmental stress tests confirmed <u>no issues</u> for: (1) Sealed Cavity; (2) MEMS *membrane* and *anchor*, (3) *metallization* and *vias*

NanoMech[™] vs. Existing MEMS Technology

Package (Lid)	
Moving Devices (Switches, Varactors, etc.)	here in
Interconnect and Passives	V
CMOS, BICMOS,	

Integrated into metal stack of any IC using standard equipment and materials

Built into Existing CMOS

Traditional Approach vs. NanoMech Technology

Cavity Embedded in CMOS Array of Cavities with Switches on 4LM CMOS

NanoMech Switch Fully Integrated into Interconnect

Device Integrated into Chip

Integrated into Standard CMOS, No Unique Packaging

- Acknowledgements
- Introduction to Cavendish Kinetics
 CMOS compatible MEMS cantilever
- MEMS cantilever memory switch
- > The cavity
- Harsh environment rocker memory design
 - Harsh memory temperature performance
- Harsh memory radiation performance
- Other applications
- Conclusion

Elements of Non Volatile Switch Harsh Environment Operation

Extended Life Operation Harsh Design

Non Volatile Switching Cycles

Temperature Performance Harsh Design

Core Technology – Robust and Very Stable

Data retention and memory window (168hr Bake Retention)

168 hr Bake Retention Temperature

Adhesion grows at 350°C and Greater

Failure Mode

 The only failure mode observed is increase in stiction between the cantilever and contact interface, primarily at higher operating temperature.

This implies that the bit may fail as:

- failure to erase or
- failure to re-program, but
- never any loss of data

Adhesion Force of Metal Contacts vs. 168 hr Bake Retention Temperature

- Introduction to Cavendish Kinetics
 - ► NanoMechTM technology
- MEMS cantilever memory switch
- > The cavity
- Harsh environment rocker memory design
 Harsh memory temperature performance
- Harsh memory radiation performance
- Other applications
- Conclusion

Effect of Radiation on Device Standard cantilever vs. Harsh Env. Design

Shift in Program Voltage (%)

Radiation has no impact on Harsh Environment Design But does Impact Traditional cantilever

Radiation Hardness Harsh Design Performance

NanoMechTM Specs For Non Volatile Memory

Parameters	Specifications
Operating Voltage	Native voltage (eg. 1.8V to 5 V)
Write Current	Electrostatic device; baseline CMOS current
Standby Power	Non-volatile memory; baseline CMOS power
Write Time	< 200 ns
Read Time (NDRO)	< 20 ns
R _{on} versus R _{off} Range	Five orders of magnitude
Endurance	>1 Million Cycles
Retention	>10 years (power off)
Operating Temperature Range	-150°C to + 300°C
Storage Temperature	-200°C to + 350°C
Shock Survival	>> 50,000 G
Total Dose Hardness	> 4 x 10 ⁶ rad (Si)

- ► Introduction to Cavendish Kinetics
 ► NanoMechTM technology
- MEMS cantilever memory switch
- > The cavity
- Harsh environment rocker memory design
 - Harsh memory temperature performance
- Harsh memory radiation performance
- Other applications
- Conclusion

NanoMech Applications

Electrical Componets

Non-Volatile Switches

- Integrated RF Components
 - Programmable Variable Capacitors
 - Low Impedance Switches
 - Programmable Filters
 - Integrated Resonators
 - Phase Shifters
- Metal Logic
- I/V Switch in Interconnect
 - Signal routing
 - Power switching

Other Applications of Technology

- Display
 - Pico Projector, Light Modulator
- Focal Plane Array
- > CMUT
 - Ultrasonic sensors
- Inertial Measurement Sensors
 - Drop sensor
 - Accelerometer
- MEMS needing 3rd Gen Packaging

Wide Range of Applications that Can be Enabled

Conclusions

- Cavendish Kinetics has developed a robust, low voltage, nonvolatile memory using standard CMOS interconnect processing
- ROCKER tested for 1 million switches, cantilever tested to 100 billion switches
 - No sign of performance degradation
- Could also be embedded in the back end of other material systems such as Bipolar, GaAs, GaN, SiC etc
- Reliability was demonstrated from -150 °C to +300 °C
 Extendable based upon MEM Design
- Non-volatile memory reliability was also demonstrated under radiation doses of 4Mrad (TID (Si))