Phase Change Memory:
A Memory Technology for All
Applications



History of Phase Change
Memory



The Concept
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Stan Ovshinsky first filed a patent on
June 21, 1961 on the switching between
high and low resistance states for
electrical circuits.
In the first granted patents 3271591, he
demonstrated the many different ways
the circuits could be fabricated.
Reversible electrically induced changes
in the resistance of thin films of
chalcogenide alloy amorphous
semiconductors were first reported in
the technical literature in 1968.

» S. R. Ovshinsky, Phys. Rev. Letters

21(1968) 1450.



One of the First Attempt

Amorphous semiconductors: jury stillout 56 A MoSraw. i Fuoeam;
Designing low-noise bipolar amplifiers 82 September 28,1971
The big gamble in home video recorders

Electronlcs

1970

Die: 122 mil X 131 mil
Capacity: 256 bits

Reset: ~200 mA, <25V, 5 us
Set: 5 mA, ~ 25V, 10 ms
Read: 2.5 mA, <5V

“Nonvolatile and Reprogrammable,
the Read-Mostly Memory is Here,”
R. G. Neale, D. L. Nelson, and
Gordon E. Moore, Electronics
(Sept. 1970) p. 56.



Detour in Phase Change Memory

With the large current and slow switching, phase change memory
was not competitive with EPROM, and the semiconductor memory
industry lost interest
Optical memory application of laser-initiated reversible phase-
change in chalcogenide alloy films was reported in 1971.

» J. Feinlieb, S. lwasa, S.C. Moss, J. deNeufville, and S.R.

Ovshinsky, J. Non-Crystalline Solids, 8-10 (1971) 909.

In the 80’s and 90’s, there was intense effort in Japan for
development of RW CD/DVD which perfected the GST material
In 1999, Ovonyx was founded to take a fresh look at the new
material in electrical memories



Progress in Phase Change Memory
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Phase Change Memory
Capability



Basic Memory Concept
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Technology Capability

B Direct write capability (no erase before write) as well as
byte function (no block flash erase) makes it RAM like,

easing significantly system implementation

» For flash, changing a byte involves saving the current data, erasing a
whole block (>100 mSec) and writing back old data + new byte (total ~1
sec)

» For PCM, changing a byte involves writing the new data: (total < 100
nSec, can be less than 50 nSec with new alloy)

» Endurance >> 108 cycles

B With read current > 10 uA, read speed is expected to
be comparable to NOR and DRAM



Basic Memory Element
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B Memory cell = memory element (variable resistor) + selector
B Selector can be MOSFET, BJT, Diode or other switches
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A Memory For Everybody

Even though Phase Change Memory is not an universal memory in
all respects, it comes close to an universal memory on how it can be
used

For embedded with the smallest amount of process change, one
can get a high cycle EEPROM equivalent at lower cost.

By using the same process but changing the alloy, one can get a
high temperature memory suitable for the most demanding
automotive application

For dedicated high density memory, one can get a memory cell that
is smaller than DRAM and has multi-level cell capability. Using high
performance alloys, programming speed similar to DRAM are
available.

Using special switched selectors, one can get multi-layer memory
than can rival NAND memory in cost
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Embedded Memory
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B Standard CMOS

B Add PCM element above
contact

B Continue with normal
metal layers

B Low operating voltage
(~3V) simplifies based
CMOS requirement

M Cell size ~ 20 A2



NOR Replacement

M BiPolar select diode
smaller in area but more
special process

B Can carry more current

M Cell size ~10 A2
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DRAM Cost

Metal-1

M Epitaxial PN diode
smaller in area,
special process and
circuits

B Carry more current

M Cell size < 6 \2



Multi-Layer Memory
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B Thin film PN diode or
selector allows stacking
e oo I of memory layers
M Cell size 4 A%/ N layer
B Together with multi-
level capabilities:

lowest cost memory
rivals NAND
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Intel / STM PCM Demonstration

Intel and STMiicroelectronics demonstration of a 128-Mbit, 90-nm phase-change memory in
use with a mob phone to the Mobile World Congress at Barcelona, Spain.
Reproduced from EE Times Europe, February 18, 2008
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Samsung 512 Mb
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Figure 2. A photograph of 512Mb PRAM chip.

J. Oh et al, “Full Integration of Highly Manufacturable 512Mb PRAM based on 90nm Technology”, IEDM Tech Digest, 2007.
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Scalable Diode Select Cell
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Figure 3. Vertical view of a 512Mb PRAM cell array. F}glll‘e 5 :Scllelllfntac diagram of process sequence for vertical
diode and SABEC.

B Samsung has demonstrated a 5.8 A2 memory cell using selective epi
diode as selector.
B The simple memory cell structure scales directly with lithography

J. Oh et al, “Full Integration of Highly Manufacturable 512Mb PRAM based on 90nm Technology”, IEDM Tech Digest, 2007.
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Samsung PCM Roadmap
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Figure 1. PRAM development roadmap with design rule and unit
cell size.

J. Oh et al, “Full Integration of Highly Manufacturable 512Mb PRAM based on 90nm Technology”, IEDM Tech Digest, 2007.



Reset Current (mA)
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B Samsung has reported that by
confining the GST into the pore,
the reset current is reduced by
~50%

M |t also reduces the horizontal
spread of the heated region,
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further facilitating scaling

Fig.1 Comparison of reset current M |ntegrated with a diode, the cell

between confined and planar
structure along with
contact diameter [Ref 2].

J. Lee et al., “Highly Scalable Phase Change
Memory with CVD GeSbTe for Sub 50 nm
Generation”, 2007 Symp on VLSI Tech, pp 102.

cell

structure is highly scalable
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TEM of Confined Cell + Diode Select
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Fig.11 (a) Magnified TEM images of GST on 50nm contact
device, (b) SEM 1mage of fully integrated contfined
cell structure on diode.
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Simple Cell Layout

Fig. 6 Top. t1lt. and vertical SEM 1mages after CMP.
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Technology Enabler

M The cell is cylindrically symmetrical and scaled
directly with lithography
M Key Technologies

» Litho technology for small pore (hole) formation
» CVD metal and CVD GST processes
» Small hole etch back and clean

23



Single Memory Cell Structure




Material Scaling Limit
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C D Winight, M M Aziz, M Armand. 8 Senkader and W Yu
Depariment of Engineering, University of Exater, Uk
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Source: C.D Wright et al., EPCOS 2004

Source: C. Lam, SRC NVM Forum 2004
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Summary

B Phase change memories based on Chalcogenide
accepted by industry as leading candidate for new NV

memories
» Ovonyx licensees: Intel, STM, Elpida, Samsung, Qimonda & Hynix

B Near term: higher functionality (easy CMOS add on,
direct byte write instead of block, > 10° Cycles) makes
a better flash

B Longer term: more scalable, cost cross over NOR, then
DRAM, then NAND as NOR/DRAM/NAND slow down
in scaling
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