

EPAM Technology ... Opening New Opportunities

"Electroactive Polymer Artificial Muscle – A Polymer Based Generator?"

Randy Feldman – Sr. Chemist Artificial Muscle, Inc. – Sunnyvale, CA Presented to: TFUG – February 20, 2008

February, 2008

ENERGY GENERATION

UTOMOTIV

EDICA

IDUSTRIAI

Outline

- AMI History
- What we do
- Development milestones
- How it works
- Key benefits
- Key advantages
- Potential electrical power generation
- Summary
- Acknowledgements

Who We Are

AMI History

- Founded as an independent company in 2003
- Spun-out of SRI to commercialize electroactive polymer artificial muscles (EPAM[™])
- \$25M of funded development over ~ ten years
- Located in Sunnyvale, CA
- ► ~ 50 Employees

What We Do

- New class of OEM smartMOVE[™] actuators, generators, and sensors for the consumer, medical, and industrial markets.
- ► This proprietary smartMOVETM (EPAM) technology meets the growing market needs for:
 - Reduced power consumption
 - Higher mobility
 - Improved safety and reliability
 - Quieter operation
 - Fewer mechanics
 - Lower cost

EPAM will do to actuators what semiconductors

did to vacuum tubes

Development Milestones

- 1960's Japanese researchers identify first electro-active polymers (EAP), based on ionic gels, considered a scientific curiosity
- 1990's DARPA funds \$10M's for advanced actuator research, leads to piezo, shaped memory alloy and EAP development
 - SRI researchers, led by Ron Pelrine, develop dielectric elastomer Electroactive Polymer Artificial Muscle (EPAM) using commonly available silicone and acrylic polymers, solving many of the technical and cost issues associated with wet, expensive materials used in ionic EAPs
- ▶ **2001** 1st of more than 30 EPAM patents issued
- ▶ 2003 Artificial Muscle Inc. founded by 3 SRI researchers to commercialize EPAM
- 2004 AMI Product development initiated, EPAM development kits shipped to more than 20 companies
- 2005-07 AMI product development achievements:
 - High-performance silicone material developed
 - Diaphragm Actuator product platform applicable to many product opportunities introduced
 - Low-cost drive electronics engineered
 - High-volume electrode printing process and inks developed
 - Announced 1st product for camera lens A/F actuator & trials begin with leading camera module suppliers, OEMs and handset mfg's.
 - Secondary products developed: micro pump for medical markets; dynamic valve for industrial markets;
 - AMI enters into manufacturing agreement to supply production needs
- ▶ 2008 1st Product launch, Mfg. scale-up, product revenues

Electroactive Polymer Artificial Muscle, EPAM

> An EPAM device is composed of:

- A parallel plate capacitor comprised of:
 - a thin film elastomeric dielectric that has been pre-strained
 - Conductive conformable electrodes

The device is activated by:

- Applying an electrical charge to the electrode that creates an electrical field in the dielectric
- The charged dielectric thins due to Maxwell Force causing an increase in the film's area
- The resultant increase in Cartesian area is captured and converted to Z-Axis motion using AMI's patented design

AMI's EPAM technology relies on the ability of our device to perform work in the form of "stroke". Stroke is governed by the following approximation for the film used:

Stroke $\approx \underline{\varepsilon o \times \varepsilon s \times E^2}$,

Where:

εο = Permittivity of air

εs = Dielectric Constant

E = Electric field or operating voltage/thickness

Y = Young's Modulus

How it works... think of a flexible capacitor

ARTIFIC

INCORPORATED

CLICK UMA TO ANIMATE

Key Benefits of *smaRTM*OVE[™]

The new smartMOVE technology platform enables a new class of products which are:

- Energy efficient
- Inexpensive
- Lightweight
- Small and quiet

These new products:

- Generate little heat
- Produce no magnetic fields
- Have a broad frequency response
- Provide direct drive

smartMOVE technology will replace traditional

electromechanical motion

Single Platform UMA

Lens Positioners Valve Actuators Pump Actuators Power Generation Sensors Smart Seals Acoustic Speakers

- Universal Muscle Actuator (UMA)
 - Addresses 75% of current applications
 - Patented Double Diaphragm Platform
- Scalable performance parameters
- Scalable physical size (mini to macro)
- Simple manufacturing process
 - 2-D flat film manufacturing process
 - Multiple configurations can be easily "printed"

Addresses 75% of current applications

Technology is Scalable and Configurable

- Extremely Flexible Design
- Displacement and stroke scale with size
- Force scales linearly with number of layers
- Patterned electrodes enables complex movement

Flexible, Scalable and Configurable

The Energy Production Cycle

Strain

$$C_i = \varepsilon_o \times \varepsilon_r \times \frac{A_i}{d_i} = 400 nF$$

$$C_s = \varepsilon_o \times \varepsilon_r \times \frac{A_s}{d_s} = 1600 nF$$

$$C_s \times V_s = Q_s = Q_i = C_i \times V_i$$

$$A_V = \frac{V_i}{V_s} = \frac{C_s}{C_i}$$

$$A_E = \frac{0.5 \times C_i \times V_i^2}{0.5 \times C_s \times V_s^2} = \frac{C_i \times V_i \times V_i}{C_s \times V_s \times V_s} = \frac{V_i}{V_s}$$

Simulation Results of EPAM Generator

License – Wave Power Generation

Market Opportunity

- Wave power is a viable alternative energy source in many regions
- 1st application is self-powered wave power buoy for harbor, port, coastal safety – lights and beacons
- Will also be used for Seawall generation

AMI Advantages

- Scalable, distributable energy
- EPAM is ideal impedance match for wave power and other naturally occurring frequencies
- EPAM generators are best suited for applications that have very high forces and very low velocities
- EPAM generators ideally suited for applications using high DC voltages (2-10 kVdc) for distribution

Many Other Power Generation Ideas...

Images courtesy of SRI International

Summary

- Currently, AMI is starting to commercialize EPAM based actuators
- AMI's goal is to concentrate on market needs for improved actuators
- AMI has the strongest EPAM IP portfolio
- EPAM devices utilize Maxwell Force Cartesian Plane area growth and AMI's patented design to create Z-axis actuation
- The technology enables a new class of products with high energy density
- **EPAM** is viable for energy generation

- SRI International
- Maria Peterson