AVS Thin-films User Group meeting, October 15, 2008

Recent Progress in Resistance Change Memory

Yoshio Nishi Department of Electrical Engineering, Stanford University, Stanford, California 94305-4070

Outline

- Emerging nonvolatile memories
- Switching behaviors metal sulfides and metal oxides
- Device applications nonvolatile memory and nonvolatile logic
- Phenomenological behaviors
- Physical mechanisms
- Scalability
- Summary

Motivations for new nonvolatile memory research

- Scalability limit beyond 32nm nodes of existing memory both volatile memory and nonvolatile memory
- Increasing needs for less power consumption on chip
- Increasing demands for on-chip memory size
- "Nano" materials evolution/revolutions have stimulated exploration of new memory opportunities
- Logic coupled with memory

Memory area on a chip will increase

Due to design productivity, yield, and power

The number of electrons stored in the floating gate

A. Gibby, Stanford Univ Thesis, 2008

Requirements for next generation NVM

Hyunsang Hwang, Stanford, 07

ITRS 2007

2007 ITRS ERD Chapter Resistance-based memory technologies

	Nanomechanical memory	Fuse/Anti fuse Memory	Ionic Memory	Electronic effects Memory	Polymer Memory	Molecular Memories
Storage Mechanism	Electrostatically- controlled bi- stable mechanical switch	Multiple mechanis ms	Ion transport in solids	Multiple mechanisms	Not known	Not known
Cell Elements	1T1R or 1D1R	1T1R or 1D1R	1T1R or 1D1R	1T1R or 1D1R	1T1R or 1D1R	1T1R or 1D1R
Device Types	CNT bridge CNT cantilever Si cantilever Nanoparticle	M -I-M e.g. Pt/NiO/Pt	1) Solid Electrolyte 2) RedOx reaction	 Charge trapping Mott transition FE Barrier effects 	M-I-M (nc)-I-M	Bi-stable switch

2007 ITRS Summer Conference – San Francisco – 18 July 2007

Resistance changes

- Bulk material conduction changes depending upon whether the bulk is crystalline or amorphous----phase change memory
- Formation of nanoscale conductive pass in solid which creates "on" state---*nano-filament based* resistance change memory
- Lowering or thinning of the barrier between electrode and solid which defines "on" state conduction---*uniform switching resistance change memory*

Resistance Change Memory With Filament Formation

Conducting paths between the device's two terminals in a reversible process that changes electrical resistance by orders of magnitude

- Filament effect (contributed by metal ions, charged defects, soft breakdown, storage/release of charge carriers, etc)
- small applied voltage levels and energy
- large non-volatile resistance changes
- simple, highly scalable structure

3D, Stackable Cross-Point Memory

Outline

- Emerging nonvolatile memories
- Switching behaviors metal sulfides and metal oxides
- Device applications nonvolatile memory and nonvolatile logic
- Phenomenological behaviors
- Physical mechanisms
- Scalability
- Summary

Metal sulfide: Filament

Phillips Research Lab

- P.W.M. Blom et al., *Ferroelectric Schottky Diode,* Phys. Rev. Lett. 73, 2107 (1994)
- P. van der Sluis, Non-volatile Memory Cell in Zn_XCd_{1-X}S, Appl. Phys. Lett. 82, 4089 (2003)

Zn _x Cd _{1-x} S		
Read/Write Time	~ 50 ns	
On/Off Ratio	10 ⁶	
On/Off Resistance	100 / 1M Ω	

NEC Corp.

• T. Sakamoto et al., *Nanometer-scale Switches Using Copper Sulfide*, Appl. Phys. Lett. 82, 3032 (2003)

Cu _{1-X} S			
Read/Write Time	~ 100 us		
On/Off Ratio	10 ⁶		
On/Off Resistance	50 / 100 M Ω		

Small-scale devices

On-resistance is independent of contact size \rightarrow filament conduction Off-resistance is proportional to contact size \rightarrow bulk leakage On/Off ratio improves with scaling

Z. Wang et al, IEEE Electron Device Letters Vol.28,(2007) pp14-16

Metal Oxide: Filament

Fuse / Anti-fuse type (Conductive Filament)

- Set : voltage-induced partial dielectric breakdown

I. H. Inoue et al., Cond matter, 0702564v1 (2007)

Outline

- Emerging nonvolatile memories
- Switching behaviors metal sulfides and metal oxides
- Device applications nonvolatile memory and nonvolatile logic
- Phenomenological behaviors
- Physical mechanisms
- Scalability
- Summary

Compact "Non-volatile" Logic

NVSRAM: No Area Overhead

2-terminal to 3 terminal devices

Banno, N., Sakamoto, T., Hasegawa, T., Terabe, K. & Aono, M. Effect of ion diffusion on switching voltage of solid-electrolyte nanometer switch. Jpn. J. Appl. Phys. 45, 3666-3668 (2006).

@ 2006 OUP

Outline

- Emerging nonvolatile memories
- Switching behaviors metal sulfides and metal oxides
- Device applications nonvolatile memory and nonvolatile logic
- Phenomenological behaviors
- Physical mechanisms
- Scalability
- Summary

Materials shown Resistance Switching

Binary Metal Oxide	TiO ₂ , NiO, Cu _x O, ZrO ₂ , MnO ₂ , HfO ₂ , WO ₃ , Ta ₂ O ₅ , Nb ₂ O ₅ , VO ₂ , Fe ₃ O ₄
Perovskite	$\begin{array}{l} PCMO(Pr_{0.7}Ca_{0.3}MnO_3), \ LCMO(La_{1-x}Ca_xMnO_3) \\ BSCFO(Ba_{0.5}Sr_{0.5}Co_{0.8}Fe_{0.2}O_{3-\delta}), \ YBCO(YBa_2Cu_3O_{7-x}) \\ (Ba,Sr)TiO_3(Cr, \ Nb\text{-doped}), \ SrZrO_3(Cr,V\text{-doped}), \ (La, \ Sr)MnO_3 \\ Sr_{1-x}La_xTiO_3, \ La_{1-x}Sr_xFeO_3, \ La_{1-x}Sr_xCoO_3, \\ SrFeO_{2.7}, \ LaCoO_3, \ RuSr_2GdCu_2O_3, \ YBa_2Cu_3O_7 \\ \dots \end{array}$
K ₂ NiF ₄	La _{2-x} Sr _x NiO ₄ , La ₂ CuO _{4+ δ}
Others	Ge _x Se _{1-x} (Ag,Cu,Te-doped), Ag ₂ S, Cu ₂ S, CdS, ZnS, CeO ₂

Switching Operation Polarity

• Depending on the materials and measurement, the curves could vary considerably.

SUMMARY of switching models (A. Sawa, AIST, NVM, Japan)

H. Hwang 2008

Fig.1 *I-V* curves of TiN/ZnO/Pt device for initial and 10th, 100th and 500th DC cycles using double voltage sweeping mode with *I*_{COMP}=5mA.

Fig. 2 Memory data retention in HRS and LRS, the current values were tested under a high durable stress (500mV) by using sampling mode

N. Xu et al, 2008 VLSI Symposium, Honolulu

Outline

- Emerging nonvolatile memories
- Switching behaviors metal sulfides and metal oxides
- Device applications nonvolatile memory and nonvolatile logic
- Phenomenological behaviors
- Physical mechanism
- Scalability
- Summary

Proposed Mechanism 1

Ionic Transport and electrochemical redox reaction type

- Set : The oxidation of an electrochemically active electrode metal
 - The drift of the mobile cations toward counter electrode
 - Form a highly conductive filament
- Reset : An electrochemical dissolution of the conductive bridges
 - \Re e.g., Ag+ in Ag₂S, Ag+ in GeSe, Cu²+ in CuO_x

Xin Guo et al., Appl. Phys. Lett. 91, 133513 (2007)

Proposed mechanism 2

Electronic Effect type (Charge trap & Schottky Contact)

- Charge injection by tunneling at high electric field
- Trapped at interface states in insulator
- Modification of the electrostatic schottky barrier and its resistance
 ※ e.g., Ti/PCMO/SRO

Sawa et al., Appl. Phys. Lett. 85, 4073 (2004) T. Fuji et al., Apply. Phys. Lett. 86, 012107 (2005) Chen et al., Appl. Phys. Lett. 91, 123517 (2007)

TiO2 Switching

- V_0 model of forming and switching in TiO₂
- Evidence supporting V_O model
- Critical look at data:

Are vacancies really the whole story?

- Evidence that H is origin of fieldprogrammable rectification
- H + V_O model of forming in TiO₂ and related oxides

Yoshio Nishi & John Jameson, DRC 2008

Outline

- Emerging nonvolatile memories
- Switching behaviors metal sulfides and metal oxides
- Device applications nonvolatile memory and nonvolatile logic
- Phenomenological behaviors
- Physical mechanisms
- Scalability
- Summary

Scalability questions

Can "on" resistance stays same or decrease? Can "off" resistance stays same of decrease? Retention characteristics vs Programming speed ? Endurance? Programming voltage tunability?

I-V Characteristics

S. Kim and Y. Nishi, Non-Volatile Memory Technology Symposium, 2007, Albuquerque

$R_{@0.1V}$ vs. Device Area ($I_{comp.} = 1mA$)

- R_{on}: ~150Ω, almost independent of device area
 - Filament size (~5nm) much smaller than device area
- R_{off}: increasing with scaling down of device area.
 - Mainly determined by bulk properties
- R_{off}/R_{on} : improving with scaling down of devices

S-W Kim, Stanford Univ. Thesis, 2008

Cu_{2-x}S Nanopillars

Acc.∨ Spot Magn Det WD 15.00 kV 2.0 80000x TLD 6.1 SIS XL.TIF

Manipulation of characteristics

- Simple structure : 2-terminal device
- Scalability : ~40nm
- Large on/off ratio : > 10⁵ @ 3mA > 10⁷ @ 2uA
- Compatibility to CMOS process
- Low V_{on} : < 0.3V

Summary

- A variety of mechanisms for switching proposed
 - Interface switching, filament, SCLC, Electrochemical reaction
 - Role of oxygen ion (O^{2-}) or vacancy (V_o^{2+})
 - Substantial role of hydrogen in the vacancy model delineated
- Materials oriented issues and opportunities
 - Reproducibility and uniformity depends on defects/structure
 - Unipolar vs. Bipolar: depend on structure/process temp.
 - Single crystal, pure-amorphous, polycrystalline
 - Improved device performance vs. Process complexity
 - uniform (atomic scale) distribution of doping element
- Potential for exciting applications
 - -- Replacement of flash
 - -- New functionality such as non-volatile latch, programmable interconnect
 - -- Ultimate universal memory embedded in logic VLSIs