TFUG Seminar

Resistive Switching Memory Technologies

An Chen

Strategic Technology Group Advanced Micro Devices (AMD)

Outline

- Memory technologies
 - Category and characteristics
- Resistive switching memories
 - Resistive switching mechanisms
 - Device characteristics
- Ionic memory
 - Resistive switching in solid-state electrolytes
 - Device and array characteristics
 - Advantages vs. challenges
- Resistive switching devices for logic applications
- Summary

Memory Technologies

Baseline and Prototypical Memory Technologies

- Mature non-volatile memories (e.g., NAND, NOR) are relatively slow in speed, have limited cycling endurance, and high operating voltage
- Novel memory technologies have certain advantages, but also face challenges

speed - cycling endurance - write energy - operation voltage - size

* The symbol size is proportional to the cell size of each memory device

ITRS Emerging Research Device Report (2007)

Early Report of Resistive Switching in Oxides

Recent Progress in Resistive Switching Devices

10/16/2008

Signatures of Switching Mechanisms

Materials

- Composition/processing effect on switching
- Electrode-dependence

Operation

- Forming process
- Switching polarity-dependence (bipolar vs. unipolar)
- Symmetry in I-V and switching characteristics
- Interface effect (rectifying vs. ohmic I-V)
- Frequency-dependence
- Device size-dependence
- Temperature effect

.

Resistive Switching Mechanisms

RRAM Comparison with Other Memories

speed – write energy – operation voltage

Write energy (J/bit)

* The symbol size is proportional to the operation voltage of each memory device

RRAM advantages:

- Non-volatile
- Low voltage
- Low energy
- Fast speed
- Scalable
- Stackable
- CMOS compatible

Resistive Switching in Solid-State Electrolytes

A quantized conductance switch is formed by electrochemical formation and annihilation of an atomic bridge between an inert electrode and an oxidizable electrode.

Images of Formation and Annihilation of Conductive Channels

10/16/2008

Ionic Memory Based on Cation-Migration

References:

- 1. S. Kaeriyama, et al, IEEE J. Solid-State Circuits 40, 168 (2005);
- 3. M.N. Kozicki, et al, IEEE Trans. Nanotech. 4, 331 (2005);
- 5. S. Dietrich, et al, IEEE J. Solid-State Circuits 42, 839 (2007);
- 7. M.N. Kozicki, et al, NVMTS, pp.10 (2004);
- 9. K. Tsunoda, et al, Appl. Phys. Lett. 90, 113501 (2007);
- 11. K. Aratani, et al, IEDM Tech. Dig., pp.783 (2007).

- 2. K. Terabe, et al, Nature 433, 47 (2005);
- 4. M.N. Kozicki, et al, NVMTS proceeding, pp.83 (2005);
- 6. T. Sakamoto, et al, Symposium VLSI Tech., pp.38 (2007);
- 8. C. Schindler, et al, IEEE Trans. Electron Dev. 54, 2762 (2007);
- 10. Z. Wang, et al, IEEE Electron Dev. Lett. 28, 14 (2007);

Ionic Memory: Device Characteristics

Materials		Sulfides		Chalcogenides			Oxides		
		Ag/Ag ₂ S [1]	Cu/Cu ₂ S [2]	Ag/GeSe [3]	Ag/GeS [4]	Cu/GeS [4]	Cu/Ta ₂ O ₅ [5]	Cu/WO ₃ [6]	Cu/SiO ₂ [7]
Thickness (nm)			~ 40	~ 50	60	60	15	50	12
Device size		150×100nm ²	d =30nm	d = 75nm	d=240nm	d = 300nm	d=0.2-10µm	d=240nm	$d = 1 \mu m$
HRS→ LRS (DC)	V _{sw} (V)	< 0.4	~ 0.3	~ 0.2	~ 0.45	~ 0.3	~ 2.5	0.4	~ 0.9
	I _{sw} (μA)		2500	10	10	10	100	1	5
LRS → HRS (DC)	V _{SW} (V)	< 0.4	~ 0.1	< 0.5	~ 0.25	< 0.1	~ 1.0	0.2	~ 0.15
	I _{SW} (μA)		1000	< 10	< 10	< 2	~ 1000	< 1	~ 2
Switching time (s)		< 10 ⁻⁶	< 10-4	< 10-7	< 10-7	< 10-7	10 ⁻⁵ -10 ⁻⁴		< 10 ⁻⁶
$\mathbf{R}_{\mathrm{on}}\left(\Omega\right)/\mathbf{R}_{\mathrm{off}}\left(\Omega ight)$		10 ³ /10 ⁵	10 ² /10 ⁴	104/107	104/1011	104/1010	10 ² /10 ⁶	10 ⁵ /10 ⁹	104/107
Retention		- <u></u>	0.25 yrs	·	> 10 ⁵ s		10 yrs	>10 ⁴ s	> 10 ⁵ s
Cycle		105	> 10 ³	1011			104	105	107

* HRS: high resistance state; LRS: low resistance state

References:

- 1. K. Terabe, et al, Nature 433, 47 (2005);
- 3. M.N. Kozicki, et al, IEEE Trans. Nanotech. 4, 331 (2005);
- 5. T. Sakamoto, et al, Symposium VLSI Tech., pp.38 (2007);
- 7. C. Schindler, et al, IEEE Trans. Electron Dev. 54, 2762 (2007).

2. S. Kaeriyama, et al, IEEE J. Solid-State Circuits 40, 168 (2005);

4. M.N. Kozicki, et al, NVMTS proceeding, pp.83 (2005);

6. M.N. Kozicki, et al, IEEE Trans. Nanotech. 5, 535 (2006);

Ionic Memory: Array Characteristics

Company	State Ball	NEC/JSTA ^[1]	Qimonda ^[2]	Sony ^[3]	
Tested array size		1 kbit	2 Mbit	4 kbit	
Material system		Cu / Cu ₂ S	Ag / GeSe or GeS	Cu-Te / GdO _x	
Technology node		250 nm CMOS	90 nm CMOS	180 nm CMOS	
Minimum tested cel	l size	D ~ 30 nm	D = 20 nm	D = 20 nm	
Memory structure	and the second second	1T-1R	1T-1R	1T-1R	
Programming	Voltage	1.1 V	≥ 0.6 V	3 V	
$(\text{HRS} \rightarrow \text{LRS})$	Current		10 μ A	110 μA	
	Pulse width	5 – 32 μs	$\leq 50 \text{ ns}$	5 ns	
Erasing	Voltage	1.1 V	≤ 0.2 V	1.7 V	
$(LRS \rightarrow HRS)$	Current		20 μA	125 μA	
	Pulse width	5 – 32 μs	\leq 50 ns	1 ns	
Retention	Measured	10^3 s under 35 mV	10 ⁵ s @ 70°C	100 hrs @ 130°C	
	Projected	3 months	10 years	10 years	
R _{on} / R _{off}		$\leq 10^2 \Omega / \geq 10^3 \Omega$	$10^4 \Omega / 10^{11} \Omega$	10 ⁴ Ω / 10 ⁶ -10 ⁸ Ω	
Endurance		$10^3 - 10^4$ cycles	10 ⁶ cycles	10 ⁷ cycles	
Operating Tempera	iture		≥ 110°C	≥ 130°C	

[1] S. Kaeriyama, IEEE JSSC 40, 168 (2005); [2] S. Dietrich, IEEE JSSC 42, 839 (2007); [3] K. Aratani, IEDM Tech. Dig., pp.783 (2007)

Compare with Other Resistive Switching Memories

Company		Samsung ^[1]	Spansion ^[2]	Sharp ^[3]	Many others	
Tested array size			64 kbit	64 bit	Many binary	
Material system		TMO (e.g., NiO)	TMO (e.g., Cu_2O)	Pr _{0.7} Ca _{0.3} MnO	and complex metal oxides have been tested on resistive	
Technology nod	e	180 nm CMOS	180 nm CMOS	0.5 μm CMOS		
Minimum tested	l cell size	D ~ 70 nm	D ~ 180 nm	D = 0.8 μm		
Memory structure		1T-1R	1T-1R	1T-1R	properties, e.g.,	
Programming	Voltage	< 3 V	~ 3 V	~ 5 V	TiO _x , ZrO,	
$(\mathrm{HRS}\rightarrow\mathrm{LRS})$	Current	< 1 mA	< 100 µA	< 200 μA	Nb_2O_5 , V2O5, SrTiO_SrZrO	
	Pulse width	< 10 ns	< 50 ns	~ 20 ns	$LaMnO_3$, <i>etc</i> .	
Erasing	Voltage	< 1 V	< 1.5 V	~ 5 V	The switching	
$(LRS \rightarrow HRS)$	Current	< 2 mA	< 100 µA	< 200 µA	controversial.	
a sa bata	Pulse width	< 5 μs	< 50 ns	~ 10 ns	Call Prairie	
Retention	Measured	8 months	10 ⁵ s @ 90°C			
	Projected	10 years	10 years			
R _{on} / R _{off}		$\sim 500 \Omega / \sim 50 k\Omega$	$< 50 \text{ k}\Omega / > 1 \text{ M}\Omega$	$< 100 \text{ k}\Omega / > 1 \text{ M} \Omega$		
Endurance	1.	10 ⁶ cycles	$> 10^3$ cycles	10 ⁵ cycles (?)		
Operating Tem	perature	300°C	> 90°C	> 200°C		

[1] I.G. Baek, IEDM Tech. Dig., pp.587 (2004); [2] A. Chen, IEDM Tech. Dig., pp.765 (2005); [3] W.W. Zhuang, IEDM Tech. Dig., pp.193 (2002)

Ionic Memory: Advantages vs. Challenges

Advantages	Challenges
• Scalable	Reliability / endurance
Compatible with CMOS	Switching speed
 Low switching voltage/current 	Operating temperature
 Nonvolatile switching states 	Defect/fault tolerance
• Stackable for 3D IC	Mixed mechanisms
• (Relatively) well-understood mechanism	

Other features

- Low processing temperature
- Potential for novel architectures

Ionic Memory: Reliability Issues

Reliability concerns	Possible effects		
Over-programming or over-erasing	• R _{on} /R _{off} variation; cycling failure		
Random diffusion of migrating ions	Variation in switching parameters		
Diffusion of metal atoms	• R _{on} variation; retention failure		
Temperature sensitivity	Material degradation; switching failure		
Inherent impurities	Poor uniformity; instability		

Ionic Memory: Reliability Issues

Ionic Memory: Switching Speed

Switching

=

Ion migration in solid electrolyte

Electrochemical reaction at cathode

+

- Switching speed is determined by the speed of ion migration and electrochemical reaction
- Large variation on switching speed across different material systems (maybe due to parasitic RC delay)
- Switching speed on the order of ns has been demonstrated in chip-level measurement

Ionic Memory: Over-Programming, Over-Erasing

Over-programming and overerasing lead to long switching time, large variation on switching parameters, and short endurance. Sensing/control circuits are needed to alleviate this problem.

S. Kaeriyama, et al, IEEE J. Solid-State Circuits 40, 168 (2005)

Quantitative Modeling of Ionic Memory

Novel Logic Gates Based on Hysteretic Resistors

Novel Architectures

Summary

- Resistive switching memories involves multiple switching mechanisms.
- Ionic memory devices have the advantages in scalability, energy efficiency, and compatibility with CMOS.
- The major challenges of ionic memory are reliability and speed.
- Novel logic gates and architectures may be possible for resistive switching devices, e.g., reconfigurable IC, stackable memory, defect-tolerant architecture, *etc*.