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Outline
• Mechanical Reliability of Low-k Materials

– what is the problem?
– fracture properties and scaling with density/dielectric constant

• UV Curing Effects on Mechanical Properties
– fracture path and effects on cohesive and adhesive properties
– balancing film stress, modulus and fracture properties

• Non-Uniform UV Curing Phenomena
– evidence for non-uniform curing
– likely mechanism associated with UV light interference

• CMP Aqueous Chemistry Effects
– accelerated cracking in aqueous CMP slurries and cleaning solutions

• Die Seal and Crack Stop Structures
– fracture mechanics approach to preventing dicing damage

• Summary



2

Reliability of Interconnect Structures 

What is the problem….
highly stressed structures 

made from fragile glass layers
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Evolution of Defects control Yield through Processing

• Lower driving force for cracking, Gtotal

– thin film stresses
– CMP and packaging stress

• Optimize resistance to cracking - glass composition, network and 
pore structure, UV curing

• Control evolution of defects during processing, packaging and service
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Outline
• Mechanical Reliability of Low-k Materials

– what is the problem?
– fracture properties and scaling with density/dielectric constant

• UV Curing Effects on Mechanical Properties
– fracture path and effects on cohesive and adhesive properties
– balancing film stress, modulus and fracture properties

• Non-Uniform UV Curing Phenomena
– evidence for non-uniform curing
– likely mechanism associated with UV light interference

• CMP Aqueous Chemistry Effects
– accelerated cracking in aqueous CMP slurries and cleaning solutions

• Die Seal and Crack Stop Structures
– fracture mechanics approach to preventing dicing damage

• Summary

Experimental Methods
Glass Structure
• 29Si and 13C magic angle spinning NMR (3.2 mm MAS rotor, 12-13 KHz 

spinning rates, 9.4 Tesla magnet)
• FTIR

Fracture Mechanics Testing
• Four Point Bend (FPB) and Double Cantilever Beam (DCB) geometries 

Fracture Surface Morphology/Composition
• AFM, XPS
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Experimental Methods
Glass Structure
• 29Si and 13C magic angle spinning NMR (3.2 mm MAS rotor, 12-13 KHz 

spinning rates, 9.4 Tesla magnet)
• FTIR

Fracture Mechanics Testing
• Four Point Bend (FPB) and Double Cantilever Beam (DCB) geometries 

Fracture Surface Morphology/Composition
• AFM, XPS
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UV Curing Effects on Glass Structure
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• Improvements in fracture energies not due to rearrangement of the glass 
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Outline
• Mechanical Reliability of Low-k Materials

– what is the problem?
– fracture properties and scaling with density/dielectric constant

• Studies of Glass Network Structure
– NMR and FTIR reveal glass network structure
– UV cure reactions and changes in network structure

• UV Curing Effects on Mechanical Properties
– fracture path and effects on cohesive and adhesive properties
– balancing film stress, modulus and fracture properties

• Non-Uniform UV Curing Phenomena
– evidence for non-uniform curing
– likely mechanism associated with UV light interference

• Summary
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Outline
• Mechanical Reliability of Low-k Materials

– what is the problem?
– fracture properties and scaling with density/dielectric constant

• UV Curing Effects on Mechanical Properties
– fracture path and effects on cohesive and adhesive properties
– balancing film stress, modulus and fracture properties

• Non-Uniform UV Curing Phenomena
– evidence for non-uniform curing
– likely mechanism associated with UV light interference

• CMP Aqueous Chemistry Effects
– accelerated cracking in aqueous CMP slurries and cleaning solutions

• Die Seal and Crack Stop Structures
– fracture mechanics approach to preventing dicing damage

• Summary
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Simple Model: standing wave in a thin film on a perfectly reflecting substrate:
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n film refractive index
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d film thickness
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New Interference Model 

Superposition of the effects of 
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Role of the Bottom SiCN Layer

• Reflectivity of bottom interface strongly dependent on underlying layer.

• SiCN thin film can significantly absorb high energy UV light depending on its 
carbon content
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Outline
• Mechanical Reliability of Low-k Materials

– what is the problem?
– fracture properties and scaling with density/dielectric constant

• UV Curing Effects on Mechanical Properties
– fracture path and effects on cohesive and adhesive properties
– balancing film stress, modulus and fracture properties

• Non-Uniform UV Curing Phenomena
– evidence for non-uniform curing
– likely mechanism associated with UV light interference

• CMP Aqueous Chemistry Effects
– accelerated cracking in aqueous CMP slurries and cleaning solutions

• Die Seal and Crack Stop Structures
– fracture mechanics approach to preventing dicing damage

• Summary
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Mechanics of Damage Initiation and Propagation

damage created by slurry 
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Mode I 
crack initiation and propagation
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Mode II crack deflection

crack kinks to surface for KII <0

damage involving low-k film delamination

tractions on film edge of a through cut induce a 
Mode III component responsible for delamination shape
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• low crack growth rates critical for 
growth of nano-scale flaws
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v-G curves
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Outline
• Mechanical Reliability of Low-k Materials

– what is the problem?
– fracture properties and scaling with density/dielectric constant

• UV Curing Effects on Mechanical Properties
– fracture path and effects on cohesive and adhesive properties
– balancing film stress, modulus and fracture properties

• Non-Uniform UV Curing Phenomena
– evidence for non-uniform curing
– likely mechanism associated with UV light interference

• CMP Aqueous Chemistry Effects
– accelerated cracking in aqueous CMP slurries and cleaning solutions

• Die Seal and Crack Stop Structures
– fracture mechanics approach to preventing dicing damage

• Summary

Evolution of Defects control Yield through Processing

• Lower driving force for cracking, Gtotal

– thin film stresses
– CMP and packaging stress

• Optimize resistance to cracking - glass composition, network and 
pore structure, UV curing

• Control evolution of defects during processing, packaging and service
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SRC 1391.001: Materials and Interface Innovation for New 
Concepts in Microelectronic Packaging
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Summary
• Mechanical Reliability of Low-k Materials

– what is the problem?
– fracture properties and scaling with density/dielectric constant

• UV Curing Effects on Mechanical Properties
– fracture path and effects on cohesive and adhesive properties
– balancing film stress, modulus and fracture properties

• Non-Uniform UV Curing Phenomena
– evidence for non-uniform curing
– likely mechanism associated with UV light interference

• CMP Aqueous Chemistry Effects
– accelerated cracking in aqueous CMP slurries and cleaning solutions

• Die Seal and Crack Stop Structures
– fracture mechanics approach to preventing dicing damage

• Summary


