Resistive switching for next generation Flash technology

Christie Marrian, Spansion

10/24/07
Cautionary Statement

This presentation and comments made pursuant thereto may contain forward-looking statements that are made pursuant to the safe harbor provisions of the Private Securities Litigation Reform Act of 1995, including statements regarding future deployment of MirrorBit™ technology, the company's ability to capitalize on its product and technology leadership and its operational efficiency. Investors are cautioned that the forward-looking statements in this presentation involve risks and uncertainties that could cause actual results to differ materially from the company's current expectations, including the possibility that demand for the company's Flash memory products will be lower than currently expected; that customer acceptance of MirrorBit technology will not continue to increase; that OEMs will increasingly choose NAND-based Flash memory products over NOR- and MirrorBit ORNAND architecture-based Flash memory products for their applications; that there will be a lack of customer acceptance of MirrorBit ORNAND architecture-based Flash memory products; that the company will not achieve its current product and technology introduction or implementation schedules; that the company will not be able to meet customer demand during cyclical industry or economic downturns; that competitors will introduce new memory technologies that render the company's Flash memory products uncompetitive or obsolete. The company urges investors to review in detail the risks and uncertainties in the company's Securities and Exchange Commission filings, including but not limited to the company's Annual Report on Form 10-K for the year ended December 25, 2005.
Introduction

- NAND market
 - Almost 100% data storage.
 - Memories are mostly for memory cards or memory products.
- NOR market
 - Mainly for code storage.
 - Memories are embedded in systems.
- NOR flash memory technology
 - Only for NOR market? No.

![NAND/NOR Sales ($M)](chart)

Source: WSTS
Cellular Requirements

Source: Spansion estimates for 2006

- **Camera** 64Mb
- **64-Channel Sound** 128Mb
- **Search Engine** 256Mb
- **Navigation** 512Mb
- **High-end Multimedia** 1Gb+
- **Color LCD** 32Mb
- **Voice** 16Mb
- **10%**
- **13%**
- **20%**
- **23%**
- **14%**
- **12%**
- **8%**

Source: Spansion estimates for 2006
Floating Gate Cell Basic Operations

- Initial cell V_T is low (Data 1).

![Diagram showing program, read, and erase operations](image)
Floating Gate Scaling Barrier

- Floating gate electro-static interaction
 - Narrow floating-gate spacing
 - Tall floating gate

FG-FG coupling effect (animation)

Control gate
Floating gate
Silicon body
Tunnel oxide
Nitride Storage

• The favorite NVM technology
 – Charge does not move around the storage electrode
 – Less floating gate electro-static interaction results in denser memories.
MirrorBit Basic Operations

- Channel hot electron (CHE) programming
- Transpose source and drain for reading the data
- Band to band (BTBT) hot hole injection erasing

Program
- **Drain**
 - 9V
 - GND
 - 4V
- CHE injection E_C
- E_V

Read
- **Source**
 - 4.5V
 - 1.2V
 - GND
- Local V_T shift

Erase
- **Drain**
 - -6V
 - GND
 - 5.5V
- BTBT hot hole injection
- E_C
- E_V
Cell Operation

Floating-Gate NAND

- **Cell Size:** $\sim 4.5\lambda^2$

<table>
<thead>
<tr>
<th>W/L</th>
<th>B/L</th>
<th>Common</th>
</tr>
</thead>
<tbody>
<tr>
<td>Read</td>
<td>5V</td>
<td>0.5V</td>
</tr>
<tr>
<td>Program</td>
<td>18V</td>
<td>0/10V</td>
</tr>
<tr>
<td>Erase</td>
<td>0V</td>
<td>18V</td>
</tr>
</tbody>
</table>

MirrorBit™ technology

- **Cell Size:** $\sim (6\lambda^2)/2$

<table>
<thead>
<tr>
<th>W/L</th>
<th>B/Ln</th>
<th>B/L n+1</th>
</tr>
</thead>
<tbody>
<tr>
<td>Read</td>
<td>5V</td>
<td>1.5V</td>
</tr>
<tr>
<td>Program</td>
<td>10V</td>
<td>5/0V</td>
</tr>
<tr>
<td>Erase</td>
<td>-6V</td>
<td>5V</td>
</tr>
</tbody>
</table>

Floating-Gate NOR

- **Cell Size:** $\sim 9.5\lambda^2$

<table>
<thead>
<tr>
<th>W/L</th>
<th>B/L</th>
<th>Common</th>
</tr>
</thead>
<tbody>
<tr>
<td>Read</td>
<td>5V</td>
<td>0.5V</td>
</tr>
<tr>
<td>Program</td>
<td>10V</td>
<td>5/0V</td>
</tr>
<tr>
<td>Erase</td>
<td>-18V</td>
<td>0V</td>
</tr>
</tbody>
</table>
MirrorBit® Quad: Technology of the Future—Today

Scaling to 32nm and Beyond

Goal – One Node Per Year

Source: Spansion Estimates September 2006
Emerging Memory Technologies

- Write time per bit:
 - NAND flash: Fast
 - NOR flash: Fast
 - RRAM, PRAM, MRAM: Good
 - DRAM, FRAM

- Read access time:
 - NAND flash
 - NOR flash
 - RRAM, PRAM, MRAM
 - DRAM, FRAM

- Scalability: Good
Memory Cell Structure

- MIM memory element built on a via
- Memory element connected with a select transistor
- Fully compatible with standard CMOS process

![Diagram of Memory Cell Structure]

Cu

Cu₂O

MIM memory element built on a via
Memory element connected with a select transistor
Fully compatible with standard CMOS process

Top electrode
Bottom electrode
Memory element
Gate
Drain
Source
Background – Trapping Model*

- OFF state mainly by space-charge-limited-conduction (SCLC) and Frenkel-Poole (FP)
- OFF → ON switch at trap-filled-limit voltage (VTFL)

Electrode Effect

OFF-state current leakage increases with reactivity between top electrode and Cu$_2$O (Ni /Co<Ti<Ta).

Free energy of formation

<table>
<thead>
<tr>
<th>Mo$_x$</th>
<th>ΔG_0 (kcal/mole)</th>
</tr>
</thead>
<tbody>
<tr>
<td>CoO</td>
<td>-51</td>
</tr>
<tr>
<td>NiO</td>
<td>-51.7</td>
</tr>
<tr>
<td>TiO$_2$</td>
<td>-212</td>
</tr>
<tr>
<td>Ta$_2$O$_5$</td>
<td>-457</td>
</tr>
</tbody>
</table>
Switching Characteristics: Ni vs. Ti TE

Cells with Ni top electrode
- Erase with both polarity
- Higher erase current

Cells with Ti top electrode
- Reverse polarity field
- Low erase current

\[V \]

\[\text{Cu}_2\text{O} \]

\[\text{Cu} \]

\[V_g \]

\[I \]

\[\text{TE} \]

\begin{align*}
\text{Voltage (V)} & \quad -2 \quad -1 \quad 0 \quad 1 \quad 2 \quad 3 \\
\text{Current (A)} & \quad 2.0 \times 10^{-5} \quad 4.0 \times 10^{-5} \quad 6.0 \times 10^{-5} \quad 8.0 \times 10^{-5} \quad 1.0 \times 10^{-4} \quad 0.0 \times 10^{00}
\end{align*}

Erase
- \(\text{TE} = \text{Ni} \)
- \(\text{TE} = \text{Ti} \)

Program
- \(I_{\text{limit}} \)
ON/OFF Window

- Model predicts high ON/OFF ratio with deep-trap materials
- ON/OFF ratio of $10^5 - 10^6$ observed

![Graph of Current vs. Voltage](image)

Cumulative Probability

- 2% OFF
- 16% OFF
- 50% OFF
- 84% OFF
- 98% OFF

Current read at 0.5V

Current (µA)

- 0.005
- 0.01
- 0.05
- 0.1
- 0.5
- 1
- 5
- 10

Tester resolution
Retention

- Long retention predicted with deep-trap materials
- Retention related to program current

90°C 30 hrs retention

25°C 50 hrs retention

Cycling

- Program with 100 ns pulses
- 0.5uA – 5uA window for cycling

10:1 operation window

Read current (uA)

Cycle
Electrical Characteristics Summary

<table>
<thead>
<tr>
<th>Characteristics</th>
<th>Values</th>
</tr>
</thead>
<tbody>
<tr>
<td>Programming V/I</td>
<td>(2-5 V) / (~ 50 uA)</td>
</tr>
<tr>
<td>Speed</td>
<td>(\leq 100 \text{ ns})</td>
</tr>
<tr>
<td>Erasing V</td>
<td>1-2 V</td>
</tr>
<tr>
<td>Speed</td>
<td>(\leq 100 \text{ ns})</td>
</tr>
<tr>
<td>Retention</td>
<td>30 hours at 90°C tested</td>
</tr>
<tr>
<td>Cycling</td>
<td>> 600 cycles tested</td>
</tr>
<tr>
<td>Read disturb</td>
<td>Zero up to 25 hours at (V < 0.5 \text{V})</td>
</tr>
<tr>
<td>Cell size</td>
<td>0.18 um</td>
</tr>
</tbody>
</table>

A. Chen et. Al, *IEDM 2005*
BEOL Thin Film Challenges for RCM

- Thin ~100A metal oxide films
- Hard to etch (process) metal films
 - Interfaces in metal-oxide-metal cell
- Highly planar CMP
 - Maintain electric field uniformity across cell

- Phase Change RCM
 - Ternary materials plus dopant
 - Encapsulation
Erase Mechanism for Copper Oxide Resistive Switching Memory Cells with Nickel Electrode

Advanced Memory Group
Spansion Inc
Trademark Attribution

Spansion, the Spansion Logo and combinations thereof are trademarks of Spansion LLC. Other product names used in this presentation are for identification purposes only and may be trademarks of their respective companies.