Front End Products Group

P

Gate Stack Scaling, Challenges and Approaches in Meeting Technology Requirements

Yi Ma Applied Materials Santa Clara Apr. 26th, 06

TFUG Seminar

Outline

- Introduction
- > Oxynitride
- Hi-K gate dielectric material and processing
- Hi-K gate dielectric electrical performance issues
- Poly depletion reduction
- Metal gate approaches
- Summary

Gate stack scaling

Gate stack scaling includes both dielectric scaling and electrode scaling

ITRS Roadmap for High Performance Devices

ITRS Roadmap	130 nm	90 nm	65 nm	45 nm
Tox,inv (Å)	23	21	17	12
EOT (Å)	15	13	10	8
Poly depletion + QM (Å)	8	8	7	4
Gate Leakage (A/cm2)	15	100	300	2000
Nominal power supply voltage (V)	1.2	1.2	1.1	1
Physical Thickness Control (% 3_{σ})	<4	<4	<4	<4

Due to the aggressive technology evolution, down scaling gate dielectric only is not enough to meet device performance

Gate Stack Scaling Paths

What happens when gate dielectric is scaled

Gate leakage has become too high due to aggressive gate dielectric thickness scaling

Major Leakage Components

There is significant Leakage even while devices are off

Consequences of the leakages

- Larger power consumption P_{leak}=Vdd*I_{leak}
 - Cost money
 - Shorter battery life for mobile products

Accelerated device degradation

- Interfacial defect formation
- Charge trapping
- Leakage increases
- Vt shift
- Lower drive current (Lower carrier mobility)
- Shorter device lifetime

Another problem with thinner SiO2

Boron penetration

Thicker dielectric for gate leakage reduction

$$J_G = b \bullet \exp(-a \bullet f \bullet T_d^{ph})$$

$$T_d^{ph} \uparrow \Rightarrow J_G \downarrow$$

Thinner Dielectric for Performance Enhancement

SO

$$C_{d} = \frac{\partial Q}{\partial V} = \frac{A}{T_{d}^{ph}} \times \varepsilon_{d} \varepsilon_{o}$$

$$T_{d}^{ph} \uparrow \Rightarrow C_{d} \downarrow \qquad \qquad \varepsilon_{d} \uparrow \Rightarrow C_{d} \uparrow$$

Λ

The goal of scaling is to find a material that behaves physically thicker and electrically thinner

Dielectric constant of typical materials

- The dielectric constant is the ratio of the permittivity of a substance to the permittivity of free space. It is an expression of the extent to which a material concentrates electric flux.
- Dielectric constant of a few typical materials:

Air: 1

- SiO₂: 3.9
- Si₃N₄: 7.8

Al₂O₃: 10

HfO₂: 25

HfSiON: 10-20

ZrO₂: 25

Ta₂O₅: 26

Front End Products Group

Oxynitride

APPLIED MATERIALS*

How to stop boron and reduce gate leakage

- Nitrogen incorporation

Two major techniques

- Plasma Nitridation
 - Expose thermally grown oxide to nitrogen plasma.
- Conventional thermal nitridation
 - Anneal oxide in NO, N2O or NH3.
 - Grow oxide in NO, N2O or mixture of NO, N2O, NH3 with O2.

Nitrogen Incorporation Processes – Plasma Nitridation

1. Base oxide growth with ISSG or RTO

- Plasma nitridation (DPN), leaving nitrogen in the top portion of base oxide
- Post nitridation anneal (PNA) for interfacial and bulk oxide improvement

Nitrogen Incorporation Processes – Thermal Nitridation

 Anneal in NO, N2O or NH3 gas, leaving nitrogen at near oxide and silicon interface

1. Thermal oxide growth

 Re-oxidation to move nitrogen away from oxide-silicon interface

Boron penetration

Nitrogen incorporation in oxide can effectively suppress boron penetration

Gate Leakage Current Reduction

DPN process is more effective in leakage current reduction

Channel Mobility

More channel mobility degradation was observed with NO anneal process due to nitrogen at oxide and silicon interface

Front End Products Group

Hi-k Gate Dielectric Material and Processing

APPLIED MATERIALS*

A detailed view of a completely new "M-I-S" system

Oxygen Vacancy – Spectroscopic Ellipsometry

Post deposition anneal is needed for oxygen vacancy reduction

Interfacial reaction

EOT 17.5Å

EOT 21.5Å

EOT 27.3Å

Interfacial layer growth is a potentially limiting factor to dielectric scaling

Interfacial reaction suppression

- Plasma Nitridation

T = 650°C, EOT = 11Å $t_{\text{PHYS,TEM}}$ IL = 7Å $t_{\text{PHYS,TEM}}$ HfSiOxNy = 22Å

Plasma nitridation is an efficient approach to suppress interfacial layer growth

Thermal Stability of ALD HfSiOx at 1050°C

Phase segregation occurs without DPN nitridation

Film stable up to 1050°C, 30 sec with DPN nitridation

With DPN Nitridation

HfSiON after 1050°C, 30 sec RTA

04241-5d-HR

5 nm

4d09-05

Thermally stable ALD HfSiOx film can be formed by incorporating nitrogen with plasma nitridation technique

Dielectric constant and phase stability

K value and phase stability are dependent on Hf and nitrogen concentration

Boron penetration evaluation

Nitrogen is needed in high-k film for suppressing boron penetration

Trapped Charges in Hi-K films

High trapped charge density in hi-k film needs to be reduced with post deposition anneal

Trapped Charge - Thickness dependent

As a disadvantage of thicker dielectric film, more trapped charges

Front End Products Group

Hi-k Gate Dielectric Electrical Performance

Requirements for High-k Gate Dielectrics

- More than 500x gate leakage reduction
- Compatibility to conventional CMOS process
 - material stable up to 1050°C S/D activation temperature
 - interfacial properties with silicon channel and gate electrode
 - robustness to Boron penetration
 - V_{th} control
- \succ Effective-mobility is larger than 90% of SiO₂
- Sufficient long-term reliability
 - Charge trapping (more severe for thicker film)
- Scalability

High-k HfSiO_x with Polysilicon Gate

Gate leakage reduction of >500x can be achieved with MOCVD and ALD technologies

High PMOS Flatband Voltage

• ΔV_{FB} of P-sub. MOS-CAP is

n+ poly-Si: ~+200mV _p+ poly-Si: ~-600mV

- Difficult to adopt to HP application without solving this problem.
- Channel implantation for V_{th} adjustment is very difficult.

A. Kaneko et al., SSDM 2003

Mobility Concerns

 μ_{coul} : Coulomb scattering

- μ_{ph} : Phonon scattering
- μ_{ST} : Surface roughness

Front End Products Group

Mobility – Impact of Interfacial Layer

Mobility improvement with interfacial layer may be due to reduction of roughness and phonon scattering

Phonon Scattering Reduction

Mobility can be improved with thicker interfacial SiO2 layer. However, EOT scaling is compromised.

APPLIED MATERIALS*

NCCAVS TFUG meeting Apr. 26, 2006

O. Webber et al., Proceeding of ESSDERC, Gronoble, France, 2005

Front End Products Group

Poly Depletion Reduction

Poly depletion vs poly carrier concentration

More poly depletion with lower carrier concentration

Laser Annealing for Higher Carrier Concentration

Laser anneal temperature has significant impact in Rs reduction

Improved Poly-Si Depletion with DSA

A poly depletion reduction of 0.8Å can be achieved with Laser annealing.

Front End Products Group

Metal Gate

APPLIED MATERIALS*

Basic Requirements

- Zero gate depletion
- Right workfunction
- Compatible with hi-k gate dielectric
- Compatible with CMOS technology
 - Thermally stable
 - No interface reaction
 - No workfunction change
- Electrically stable under operation

Key Approaches

- Metal
- FUSI
- Metal/Poly stack

Challenge in metal gate - Thermal stability

Metal gate workfunction changes toward mid-gap under high temperature anneal

Fully Silicided Gate - FUSI

Key processes

- Poly deposition
- Nickel or other metal deposition
- Silicidation
- Benefits
 - Compatible with CMOS technology
 - No new material introduced low cost/fast development cycle
 - Depletion reduction

Challenges in FUSI

Short term approach - Metal/Poly Stack

Thin layer of metal for poly depletion reduction. Poly for workfunction control

Poly depletion eliminated

A thin layer of Al2O3 is needed for mitigate HfSiOx charges

Summary

- Nitrogen incorporation can effectively reduce leakage current and stop boron penetration.
- Hf based hi-k dielectric meets gate leakage current requirement
- Charge trapping and interfacial properties in the hi-k materials need to be controlled with well engineered processes
- Electrons and holes mobility degradation can be improved by interfacial layer engineering
- Poly depletion can be reduced with Laser annealing
- Metal/Poly stack might be a viable short term solution for eliminating poly depletion

Front End Products Group

Thank You :-)

