

Stanford University

Device and Technology Challenges for Nanoscale CMOS

H.-S. Philip Wong Professor of Electrical Engineering Stanford University, Stanford, California, U.S.A. hspwong@stanford.edu

Acknowledgments

- Former IBM colleagues
- Stanford collaborators
- Many leaders in the device and technology areas around the world

SENICOND

Financial support

UCTOR

semr

Outline

Device options

- Transport enhanced devices
- Multi-gate devices
- 1D nanomaterials

Technology options

- Device fabrication by self-assembly
- Device footprint

The future

Key Challenges

- Power / performance improvement and optimization
- Variability

Integration

- Device, circuit, system

New Structures and Materials

CURRENT BULK MOSFET

FUTURE MOSFET

Problem 1: Poor Electrostatics \Rightarrow increased I_{off} Solution: Double Gate

- Retain gate control over channel
- Minimize OFF-state drain-source leakage

Problem 2: Poor Channel Transport \Rightarrow decreased I_{on} Solution - High Mobility Channel

- High mobility/injection velocity
- High drive current and low intrinsic delay

Problem 3: S/D Parasitic resistance \Rightarrow decreased I_{on} Solution - Metal Schottky S/D

- Reduced extrinsic resistance

Problem 4. Gate leakage increased Solution - High-K dielectrics

- Reduced gate leakage

Problem 5. Gate depletion \Rightarrow increased EOT Solution - Metal gate

- High drive current

Source: K. Saraswat (Stanford)

Transport Enhancement

- Drive current continues to improve until transport is completely ballistic $\delta I_D / I_D = (\delta \mu / \mu) \times (1 - B)$
 - B ~ 0.5 at L_{gate} ~ 45 nm
- Improving mobility increases drive current

$$I_D / W = C_{ox} (V_G - V_T) v_T \left(\frac{1 - r}{1 + r}\right) \rightarrow v_{inj} = \frac{\mu \mathcal{E}}{1 + \mu \mathcal{E} / v_T}$$
$$\frac{C_{gate} V_{DD}}{I_D} = \frac{L_{gate} \times V_{DD}}{(V_{DD} - V_T) \times v_{inj}}$$

- Band structure, effective mass engineering
 - Strain, SiGe, Ge, III-V, ...

M. Lundstrom," On the Mobility Versus Drain Current Relation for a Nanoscale MOSFET," *IEEE Electron Device Letters*, p. 293 (2001).

S. E. Thompson et al., "A logic nanotechnology featuring strained-silicon," *IEEE Electron Device Lett.*, Vol. 25, pp. 191 - 193, April 2004.

P. Bai et al., "A 65nm logic technology featuring 35nm gate lengths, enhanced channel strain, 8 Cu interconnect layers, low-k ILD and 0.57 µm2 SRAM Cell," *IEDM Tech. Dig.*, pp. 657 - 660, December 2004. H.-S. Philip Wong Department of Electrical Engineering

Uniaxial Strain – Stressor Films and Liners

H. S. Yang et al., "Dual stress liner for high performance sub-45nm gate length SOI CMOS manufacturing," *IEDM Tech. Dig.*, pp. 1075 - 1078, December 2004.

Strain – How Far Does It Go?

I. Aberg, J. Hoyt, "Hole Transport in UTB MOSFETs in Strained-Si Directly on Insulator With Strained-Si Thickness Less Than 5 nm," *IEEE EDL*, p. 661, Sept. 2005.

Fig. 4. Hole mobility versus effective electric field for 30% SSDOI (open symbols) and 40% SSDOI (solid symbols). Even for $T_{\rm Si} = 3.1$ nm, mobility increases as the strain in the Si is increased. Locally thinned MOSFETs were used for this comparison.

Fig. 1. XTEMs of (a) 3.1-nm-thick 40% SSDOI, and (b) 1.4-nm-thick 30% SSDOI. C-V measurements confirmed the continuity of the film.

Surface Orientation & Current Flow Direction

H.-S. Philip Wong

2006.03.29

Hybrid Orientation Technology (HOT)

Enhanced Transport with Lower m_{eff}*

ADVANTAGES

Low $m^*_{transport}$ High v_{inj} , μ

Higher injection velocity → Higher current

DISADVANTAGES

Low $E_g \longrightarrow$ High leakage currents High $\kappa_s \longrightarrow$ Worse SCE Low m* \longrightarrow High tunneling leakage

Leakage currents may hinder scalability

A. Pethe...K. Saraswat, IEDM, paper 26.3 (2005).

H.-S. Philip Wong

2006.03.29

Strained Ge pFET with HfO₂

- Integrated strained Ge on insulator with bulk Si
 - 67% Ge by Ge condensation
 - Selective UHVCVD Ge on Si
- 3X drive current improvement

STI region

No Ge growth

50nm

H. Shang, J. O. Chu, S. Bedell, E. P. Gusev, P. Jamison, Y. Zhang, J. A. Ott, M. Copel, D. Sadana, K. W. Guarini, and M. leong, "Selectively formed high mobility strained Ge PMOSFETs for high performance CMOS," *IEDM Tech. Dig.*, pp. 157 - 160, December 2004.

Ge

SiGe

SiO₂

Si

Which Low m_{eff}* Material?

Properties of Semiconductor materials

Material/P roperty	Si	Ge	GaAs	InAs	InSb
m _{eff} *	0.19	0.08	0.067	0.023	0.014
μ _n (cm²/Vs)	1600	3900	9200	40,000	77,000
E _G (eV)	1.12	0.66	1.42	0.36	0.17
٤ _r	11.8	16	12.4	14.8	17.7

- Low E_G higher leakage
- High ε_r worse SCE
 - SS ↑ V_T ↑ Reduced overdrive for fixed I_{OFF}
 - DIBL ↑ variation

Effect of reduced DOS

Best Performance

- Low m_x (v_{inj} ↑)
- High m_y (DOS ↑)
- Low $m_z (v_{inj} \uparrow)$
- Population of sub-bands is an important consideration
 - At high carrier density, carriers may populate sub-bands with different effective mass
 - Quantum confinement (high field, ultra-thin channel) and strain may cause carriers to populate sub-bands with different effective mass

Transport Enhanced Devices

Wafer-scale strained Si

- Strained Si on relaxed SiGe buffer on bulk Si
- Strained Si on relaxed SiGe buffer on insulator
- Strained Si directly on insulator
- Local strain
 - Dielectric films
 - Isolation (STI), device size dependent structures
 - SiGe in recessed source/drain

– III-V on Ge on insulator on Si !

- Crystal orientation and current flow direction
- Other materials
 - Bulk Ge
 - Ge on insulator
 - Strained Ge

Not for 45 nm / 32 nm node Enables:

- Fast III-V nFET
- If Ge works, fast pFET also
- Integrated optoelectronics

However, only small number of these devices allowed due to power dissipation

Device Design Considering Universal Mobility

Source: D. Antoniadis (MIT)

L. Chang et al., "Extremely scaled Silicon nano-CMOS Devices," IEEE Proceedings, pp. 1860 - 1873 (2003).

H.-S. Philip Wong

Device Density, Fin Height Considerations

- Spacer lithography required to achieve device density comparable to planar devices
- Active region in the gate length direction slightly longer than planar devices

25 nm

∽W_{fin}=10 nm

nMOS with pre-doping

Magn WD - 200 nm 350000x 2.5 P030318D03 Poly P1/1 nMOS

FinFET Circuits – Ring Oscillator & SRAM

Ring oscillator:

- H₂ anneal to smooth fin
- Fin pre-doping (phos., nFET) to set V_T

SRAM:

- Implant shadowing by multiple fins (fin height)
- Double contact hole print/etch for fin topography

A. Nackaerts, ... and S. Biesemans, "A 0.314µm2 6T-SRAM cell build with tall triple-gate devices for 45nm node applications using 0.75NA 193nm lithography," *IEDM Tech. Dig.*, pp. 269 - 272, December 2004.

N. Collaert, ... and S. Biesemans, "A functional 41-stage ring oscillator using scaled FinFET devices with 25-nm gate lengths and 10-nm fin widths applicable for the 45-nm CMOS node," *IEEE Electron Device Lett.*, Vol. 25, pp. 568 - 570, August 2004.

FinFET Microprocessor

- Map planar SOI design to FinFET
- Automatic layout conversion (~ 90%)
 - Device width tuning
 - EDS devices

T. Ludwig, I. Aller, V. Gernhoefer, J. Keinert, E. Nowak, R.V. Joshi, A. Mueller, S. Tomaschko, "FinFET technology for future microprocessors," *IEEE SOI Conf.*, pp. 33 – 34 (2003).

Carbon Nanotube FET vs. Si MOSFET

CNTFETs (V_{DD} = 0.4V) p-CNT MSDFET (Javey) p-CNT MSDFET (projected) CNT MOSFET (projected)

J. Guo, A. Javey, H. Dai, M. Lunddstrom, "Performance analysis and design optimization of near ballistic carbon nanotube field-effect transistors," IEDM, p. 703 (2004).

Si n-MOS data is 70 nm $\rm L_{G}$ from 130 nm technology from Antoniadis and Nayfeh, MIT

2006.03.29

CNFET Circuit-Level Performance Estimation

Technology Features Should be Additive

• New materials and new device structures

- (a) Ultra-thin body FET
- (b) Double- (or Multi-) gate FET
- (c) Strained Si (bulk, on insulator)
- (d) Ge (bulk, on insulator)
- (e) High-k gate dielectrics
- (f) Metal gates
- (g) Crystal orientation

J. Kedzierski et al., IEDM, paper 18.4, 2003.

NiSi Gate	NiSi		
	->		
Si Fin T _{si} = 25nm	T _{ox} = 1.6nm		
вох	SI		

J. Kedzierski et al., IEDM, p. 247, 2002.

Demonstrated: (a)+(c), (a)+(d), (a)+(e), (a)+(f) (b)+(a) (b)+(f), (b)+(g), (c)+(d), (c)+(e) (d)+(e), (d)+(f), (d)+(e)+(f) (e)+(f) (g)+(e)

K. Rim et al., Symp. VLSI Tech., p. 12, 2002.

H.-S. Philip Won

Key Challenges

Power / performance improvement and optimization

- Variability
- Integration
 - Device, circuit, system

Don't forget these considerations

Today's Chip – Many Complex Shapes

Learn From The Past – The Printing Press

中國語言用大約3000 個常用的字。

The Chinese language uses about 3000 common characters.

> IT'S A LOT EASIER TO TYPE USING THE ENGLISH ALPHABET !

45 nm CMOS

SRAM Cell Evolution

 Cell layout evolved from arbitrary shapes to predominantly straight lines and holes

F.L. Yang et al., "45nm Node Planar-SOI Technology with 0.296µm2 6T-SRAM Cell" *Symp. VLSI Tech.*, pp. 8-9 (2004).

90 nm CMOS

SRAM Cell (1.29µm²)

S.M. Jung et al., "A novel 0.79µm2 SRAM cell by KrF lithography and high performance 90nm CMOS technology for ultra high speed SRAM" *IEDM*, pp. 419 – 422 (2002).

M. Bohr et al., "A high performance 0.25µm logic technology optimized for 1.8V operation," *IEDM Tech. Dig.*, pp. 847 - 850, December 1996.

K. Imai et al., "A 0.13-µm CMOS technology integrating high-speed and low-power/High-density devices with two different well/Channel structures," *IEDM Tech. Dig.*, pp. 667 - 670, December 1999.

The Future of Physical Layout - Canonical Shapes

 Freelance layout → litho re-design with assist features → regular fabric → strictly rely on canonical shapes

Device Scaling Today

Fig. 12 : TEM cross section inside a 0.334µm² 6T-SRAM bit-cell

F. Boeuf...T. Skotnicki., Symp. VLSI Tech., p. 130 (2005).

Future Of Device Scaling

Gate length scaling reaching diminishing return, due to

- Increasing leakage
- Gate capacitance increasingly dominated by parasitic capacitance
 - Parasitics do not contribute to charge in the channel but load down the circuits
- Smaller device footprint (high device density) still wins because wiring load will be reduced
- Net: reduce device footprint without scaling gate length

FET Device Footprint

- Device footprint scales with technology (historical data)
- This means:
 - (a) scaling works (we all know that!)
 - (b) there is room for further innovation to reduce footprint

Adapted from: H.-S. P. Wong, G. Ditlow, P. Solomon, X. Wang, *Intl. Conf. Solid State Devices and Materials* (*SSDM*), p. 802, 2003.

Opportunities for Higher Device Density

Sublithographic device fabrication

- Regularized designs (no SRAF)
- Sub-litho locally, conventional litho globally
- Modular features based on canonical shapes

Novel process modules:

- Local metal strap
- Low-k isolation
- Low-k spacer

Self-aligned nanoscale contact holes using diblock copolymer self-assembly

L.-W. Chang, H.-S. P. Wong, SPIE 31st International Symposium on *Microlithography*, Feb 19 – 24, 2006.

Qualifying A Technology

Today:

- Transistor and wiring level
 - Process details (and errors) are hidden and quantified as "device behavior" (corners, ACLV...)
- Design manual (SPICE model, layout rules)
 - Performance is guaranteed at the transistor and interconnect level

Problem:

- Device variation makes technology qualification difficult
- Performance (broadly defined as density, speed, power etc.) is left on the table

Opportunity:

- Future devices may not partition as devices/wires
- Logic and communication means may be intimately coupled

Qualifying A Technology In The Future

Functional level

- Device details (and errors) are hidden and quantified as "circuit behavior" (timing, fan-out strength...)
- Functional unit with local logic computation with global drive built-in

Design manual

– Performance is guaranteed at the functional level

Qualify a macro

- NAND gate, multiplier, register, storage cell, communication channel
- Key need: define a canonical set of macros/system functions

The Future

CMOS will be here to stay...till 10 nm gate

Smaller device footprint is goodness

- Knobs (L_{gate}, μ, EOT) have been turned almost to the end
- New innovations offer opportunities to shrink contact size, overlay, isolation
- Don't only think lithography, think how to make features of a device

Lithograpy:

- Lithography features will be highly constrained
- Directed-assembly of canonical shapes at desired locations will assist lithography

The industry will:

- Define and develop a set of canonical circuit functions at the circuit macro level for
 - Performance benchmarking
 - Hiding device details, improving fault tolerance
 - Technology qualification