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Benefits of High Aspect Ratio 
(HAR) Interconnect

☺Reduced RC-delays
☺Reduced line resistance
☺Reduced power consumption
☺Reduced capacitance between adjacent 

metallization levels
☺Reduced signal degradation & cross-talk
☺Reduced heating, thermal stress, and stress-

induced-voids (SIV) and electromigration (EM)
☺SIV proportional to 1/(h)2.7 (h is line height)[1]; 

increased AR by 4X should reduce SIV by 40X!
☺Reduced number of metallization levels
☺Simplified CMP control (wider thinning window)
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However, ITRS retains low-AR 
(LAR) of only 1.7:1 – 2.3:1

¾This implies shrinking the heights of vias and lines 
by the same scale factor used for the width

¾As a result, line cross-section decreases as the 
square of the scale factor, and vias get shorter, 
which cause:
/Rapid increase of RC-delays
/Rapid Increase of line resistance
/Increased capacitance between adjacent metallization levels
/Increased signal degradation & cross-talk
/Increased heating, thermal stress, and related stress-

induced-voids (SIV) and electromigration (EM)
/Requires more metallization levels
/Harder CMP control (tighter allowed variability or thinning)
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Simulations: Higher AR 
Decreases RC-Delays

¾Due to surface scattering, line resistivity is 
proportional to the ratio A/V between the line’s 
surface area (A) and volume (V)
¾ Inter-level capacitance is inversely proportional 

to via height (d) and to line height (h)[2]

¾Doubling AR can reduce RC-delay by 30-50%, 
which is more than ultra low-k can accomplish
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Surface/Volume Ratio Decreases 
With Increasing Line Height

l

h

w

A/V = 2(lw + lh + wh)/lwh  ≈ 2(w + h)/wh

Assume:   h2 = 4w  (AR = 4:1);  Ö A2/V2 ≈ 2.5/w 

Assume:   h1 =   w  (AR = 1:1);  Ö A1/V1 ≈ 4.0/w

(A2/V2)/(A1/V1)  ≈ 2.5/4.0 = 0.63   (37% lower!)
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RC Reduction by Thicker Lines

O. Hinsinger et al., “Trade tips for scaling interconnects”, EE Times, June 21, 2004[3]

Lower RC for  
higher AR lines
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RC Reduction by Thicker Lines

Yiming Li et al., Int. Workshop on Computational Electronics (IWCE-10), Oct. 2004[4]

Lower RC for RE shape

Lower RC for thicker 
(higher AR) RE lines

Lower C for CL shape

120nm

240nm
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¾Vias: Capacitance is inversely proportional to the 
dielectric thickness (d):  C  =  kA/d
» Low-AR (LAR) shallow vias increase capacitive (noise) 

coupling between adjacent metallization levels!
¾Lines: Low-AR shallow trenches impair lines 

resistance: R = ρl/wh
» For line width w < 0.10µm, line resistivity ρ increases 

exponentially due to surface and grain boundaries  
scatterings (longer anneals reduce grain boundaries)

» RC delays increase with shrinking w and/or h
» Excessive power dissipation and heating Ö EM↑ & SIV↑

» Signal/noise (integrity) degradation (due to IR-drop)
¾Only reason for not using high-AR (HAR) is inability 

of PVD seed layer to provide full sidewalls coverage

Low-AR (LAR) Double-Whammy
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Ideal Seed Layers (SL) 
¾Fully continuous sidewalls and bottom coverage of 

HAR openings, even with negative slopes, yet thin 
enough inside openings to avoid their pinching-off

¾Sufficient thickness on the field for adequate surface 
conduction (minimize “Terminal Effect”) for void-free 
electrofilling and good plating uniformity

¾Minimal or no top corners overhangs
¾SL should not be less noble than Cu in electrolyte
¾SL should not develop oxide film in the electrolyte
¾Excellent adhesion to the barrier, without any poor-

adhesion spots, such as on negative slopes
¾Consistent, robust, and highly reliable process
¾High throughput deposition equipment
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Combined Conformal and Non-
Conformal Seed Layers[5-10]

¾ Independent sidewalls and field coverages
¾Fully continuous, thin coverage of bottom and 

sidewalls (including negative slopes)
¾Adequate field thickness for void-free filling and 

plating uniformity
¾Negligible overhangs when PVD SL is not required 

to provide fully continuous sidewalls coverage 
¾Excellent adhesion to barrier and plated Cu
¾Robust and consistent process with high yields 

and reliability
¾High deposition throughput: ~70 WPH
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Conventional Cu seed layers.  (a) PVD seed layer; combined (Cu plus barrier): ~2,000Å on field and < 100Å on 
lower sidewalls; vias: ~0.25µm wide; 1.90µm deep; AR ~ 7.6:1.   (b) CVD seed layer; combined (Cu plus 
barrier): ~450Å on field and sidewalls; trenches: ~0.13µm wide; 1.4µm deep; AR ~ 10.8:1

(a)

Conventional Seed Layers
(b)
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Problems with PVD Cu Seed Layers

Reference [11]
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Electrofilling

PVD Cu seed layer

void
voiding precursor

Electroplated Cu

Problems with Non-Conformal 
PVD Seed Layers (SL)

discontinuities

High Aspect Ratio (HAR) Opening
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Entrapped Electrolyte In Voids

Gap-Filled Results: 0.10µm, 4.5:1 A/R vias; gap-filled demonstrated using 
500Å thick PVD Cu seed  – from Applied Materials’ Website (Semicon 2003).  
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Electrofilling

Cu seed layer

voiding precursors

Problems with Non-Conformal 
PVD Seed Layers

Negative 
slopes

Dual Damascene

Electroplated Cu

Etch-Stop Layer

Capping/Etch-Stop Layer
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Problems with Non-Conformal 
PVD Seed Layers

¾PVD Cu S.L.       Low Reliability/Yields
» Negative slope sidewalls in retrenching features and 

in undercut crevices, nooks, and recesses[12] (due to 
over-etched multiple dielectrics in Single and Dual 
Damascene features)

» Non-Conformal PVD deposition results in 
inadequate sidewall (or step) coverage, leading to 
filling-voids and stress-induced voiding (SIV)[13-15] 

» Simultaneous exposure of barrier and Cu SL to 
electrolyte accelerates the SL corrosion.  Interfacial 
stress at the SL/Barrier interface also accelerates 
SL corrosion.  Cu SL corrosion leads to filling voids
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» Preplating activation in the electrolyte is compromised 
or eliminated, leading to defects & impaired adhesion

» Initial plating current density must be high to suppress 
SL corrosion.  This may result in “terminal effect” and 
filling voids in the narrowest features

» Interfacial oxides and poor-adhesion of electroplated 
copper onto exposed barrier sites result in filling-voids 
and/or SIV-precursors 

» Microvoids coalesce (under thermal and/or electrical 
stresses) to larger voids, resulting in vias void pulls[11]

» Vendors’ assertions that a single PVD SL is adequate 
for future nodes are problematic since it already plays 
a critical role in poor reliability (SIV and EM) and yields

Problems with Non-Conformal 
PVD Seed Layers
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Problems with Other Seed Layers
¾Conformal ALD, CVD, Electroless, and 

ECD Cu Seed Layers (on barrier)
» Slow deposition results in low throughput
» Too thick on sidewalls, yet too thin on field
» Too thin SL on field: Ö “terminal effect” (> 100%), 

filling-voids, and contact-loss by mechanical wiping 
and/or bipolar seed dissolution[16]

» Poor-adhesion of electroless and ECD Cu on barrier
» Poor uniformity and rough deposits (except ALD)
» High impurities and resistivity levels
» Electroless and ECD require additional equipment
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Problems with ECD & Electroless 
“Repair” Seed Layer

High Aspect Ratio (HAR) Opening

Electrofilling

PVD seed layer

voiding precursors 
(poor-adhesion at 
ECD-Cu/Ta 
interface)

Electroplated 
Cu

Discontinuities 
in PVD layer

ECD seed layer (requires minimal 
bridging thickness) 
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Problems with ECD & Electroless 
“Repair” Seed Layers

¾Electroless or ECD “Repair” SL (on PVD)[17-22]

» Electroless is extremely hard to control process: Erratic 
initiation time and deposition rate due to bath aging.  
Also, hydrogen blistering and high via resistance[22]

» Require minimum “bridging” thickness of Cu on the 
sidewalls, thereby limited to certain size features 

» Too thick on sidewalls yet too thin on the field
» Voiding-precursors at exposed barrier sites due to local 

formation of Ta-oxide passive film, and poor adhesion of 
the “repair” ECD or electroless Cu SL to the passive film

» High level of impurities and resistivity of seed
» Slow deposition results in low throughput
» Require additional equipment
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Combined Conformal and Non-
Conformal Seed Layers[5-10]

¾ Independent sidewalls and field coverages
¾Fully continuous, thin coverage of bottom and 

sidewalls (including negative slopes)
¾Adequate field thickness for void-free filling and 

plating uniformity
¾Negligible overhangs when PVD SL is not required 

to provide fully continuous sidewalls coverage 
¾Excellent adhesion to barrier
¾Robust and consistent process with high yields 

and reliability
¾High deposition throughput: ~70 WPH
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Combined Seed Layers

PVD/CVD seed layers: ~450Å (including barrier) on sidewalls and ~1,000Å on field.  
Trenches: ~0.13µm wide (bottom); 1.4µm deep; AR ~ 10.8:1; tilt =30°.
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PVD/CVD seed layers: ~450Å (including barrier) on sidewalls and ~1,900Å 
on field.  Trenches: 0.10µm wide (bottom); 1.4µm deep; AR = 14:1. 
(a) Mag. = 20,000X; Tilt = 30° and, (b) Mag. = 40,000X; No tilt.

Combined Seed Layers

0.10 μm

1.4 μm 0.045 μm

0.19 μm

0.10 µm

1.41 µm 0.045 µm

0.19 µm

(a) (b)
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Future Seed/Barrier Layers
¾PVD/ALD Ta/TaN barrier begins to make inroads
¾Excellent conformal bottom and sidewalls coverage 

for features ≤ 0.10µm: by ALD (or CVD) SL of Cu or Ru
¾Adequate field thickness by PVD-Cu, essential for 

robust electrofilling and adequate wafer uniformity
¾Excellent adhesion to the barrier (PVD-Cu, ALD-Ru, or 

ALD-Cu)
¾Robust process and high yields and reliability
¾High deposition throughput (~70 WPH)
¾PVD-Cu & ALD-Ru (or Cu) seed layer combinations 

capabilities already exist[23-24]!
¾SL combinations will greatly improve reliability and 

yields, and will enable HAR interconnects and  their 
benefits
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Combined ALD/PVD Seed Layers 
¾Enable HAR vias and lines with aspect ratio 

AR ≥ 4:1-10:1 Ö to realize HAR benefits
¾Improve significantly void-free electrofilling 

and reduce SIV and EM
¾Robust, reliable, and consistent process
¾ALD Ru (or Cu) and PVD Cu seed layers 

capabilities already exist[23-24]

¾Demand combined ALD/PVD SL from your 
equipment vendor!  
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Summary
Demonstrated:
¾Non-Conformal/Conformal PVD/CVD Cu S.L. for 

openings ≤ 0.10µm (AR ≥ 14:1), barrier plus seed: 
~45nm on sidewalls, and ~190nm on field, with 
excellent continuous bottom and step coverage

¾U. Cohen’s IP[5]:  Six issued Seed Layers Patents 
and several Pending Patent Applications

Future:
¾ALD & PVD or CVD & PVD SL combinations will 

enable robust and reliable HAR interconnects
¾HAR interconnects will greatly benefit performance 

and extend the technology beyond current 
capabilities
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