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1998: Unit Process Physical Results

ADVANCED TECHNOLOGIES FOR GATE STACK EVOLUTION

Grary Miner, Gary Xing, Satheesh Kuppurao, Dave Lopes
Applied Materials
Santa Clara, Califormia 95054

As device technologies advance to 0.18 um and bevond, the applications and
opportunities for Rapid Thermal Oxidation (RTO) are growing rapidly due to
two forces. First, advanced device requirements are becoming more aligned
with RTO capabilities, as process flows require a reduced thickness range and
tighter thermal budget control. Second, RTO capabilities have expanded due to
improved temperature measurement and control as well as the development of
new equipment and process technologies. Applied Materials RTP Centura™
features advanced technologies for RTO. Wet oxidation capability has been
developed to expand the thickness range of RTO while maintaining the process
control and uniformity demonstrated on dry oxides. New technology allows
processing with Ha:(); ratios not accessible with conventional pyrogenic
torches. Processes for advanced oxynitrides have been demonstrated which

allow talloring of the nitrogen profile. These developments are rapidly moving
RTO from research into production.
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Figure 3. Thin Wet Oxide Repeatability
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2003: Transistor Electrical Results

Low-energy Nitrogen Plasmas for 65-nm node Oxynitride Gate Dielectrics:
A Correlation of Plasma Characteristics and Device Parameters

P.A. Kraus?!, K. Ahmed?, T.C. Chual, M. Ershov?, H. Karbasi?, C.S. Olsen?, F. Nourit, J. Holland?, R. Zhao?, G.
Miner! and A. Lepert!
tApplied Materials, Inc., Santa Clara, CA, U.S.A.
2PDF Solutions, Inc., San Jose, CA, U.S.A.
Phone 408-563-6363, Fax 408-563-4884, E-mail philip_kraus@amat.com

Abstract
Ultra-thin oxynitride gate dielectrics (EOT 1.1 to 1.2 nm) have been prepared using quasi-remote inductively coupled nitrogen plasmas. A correlation has been
established, for the first time, between device characteristics and measurements of the nitrogen plasma characteristics. It is found that reducing the density of high-energy
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IBM says, “Classical CMOS Scaling is Dead”
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« additional performance at higher voltages
What's the consequence of this deviation?

« adramatic rise in power density
B. Meyerson, IBM, Semico Conf., January 2004, Taiwan.
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IBM says, “There’s a Power Crisis in CMOS”
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The CMOS Power Crisis:

Simple scaling is no longer an option, as we have hit a “power cliff”

B. Meyerson, IBM, Semico Conf., January 2004, Taiwan.
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Implications of Power Crisis

= New materials will be introduced
— Plasma Nitrided Gate Dielectric
— High-k Gate Dielectric
— Metal Gate

= New processes will be introduced
— Co-implantation of species to suppress diffusion
— Diffusion free annealing processes
— High-tilt high current implantation

= Processed induced strained silicon will be adopted

— SiN overlayers
— Recessed SiGe source/drain extensions
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Gate Stack Opportunities
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More Detailed Look at Gate Stack

Gate Stack Bias Causes:
v Inversion layer to form in Si under the
gate oxide.

ySmall depletion layer to form in poly-Si
electrode

EOT

i | CET or Tox Inversion

Capacitance Equivalent Thickness (CET):
Well Capa_citance in_ invers!on is the true
metric governing device performance.
Q=¢CVv
This inversion capacitance translated
into equivalent oxide thickness as CET or
Tox inversion.

CET/Tox Inversion Governs Transistor Drive Current
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Gate Capacitor Considerations

k = dielectric constant

— €, = permittivity of free space
C kEOA/t A = capacitor area
t = thickness of capacitor

1/Cinversion = 1/Cdielectric + 1/Cinversion layer + 1/Cpoly depletion

Assuming equal k’s:

CET = EOT + tinversion layer + tpon depletion
20A | 1x 12A 128 |4A ¥\ Oxide/Poly
20A(| 10x ) 12R 128 |4R 4R Oxinitride/Poly
20A (10,000x) |30A 128 |4A 4R Hi-k/Poly
|16A [10,000x |30A 128 | 4R 0 Hi-k/Metal Gate

Industry driving toward high-k and metal gates
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Plasma Nitrided Gate Stack: Scaling to 65nm
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DPN gate nitridation meets 65nm HP and LOP device requirements.
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Gate Dielectric Leakage Reduction
with High-k/Metal Gate

ITRS Roadmap 45nm
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45nm Gate Stack Technology Landscape

Gate Stack WF
Substrate Structure Dielec. Requirement Materials

P+: W, Ru, IrO,, TiAIN
Surface N+: Ta/Si/N, Al

Channel

Dual metal

~ N* & P+

Bulk g

Buried

i

Alloy:Ti/N, Ta/N, TaSiN
Silicide: NiSi, CoSi

Dual metal
~ mid gap
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Ultra-Shallow Junction
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Device Scaling and Doping Drivers

Key Parameters for Transistor Improvement

e Speed: lon/ldsat : Increase —— > Resistance : Rs : Decrease —— > Higher Doses
Higher Anneal Temp.

e Leakage: loff : Reduce = Junction Depth: Xj : Decrease — Lower Implant Energies
Shorter Anneal Time

Gate Length: Requirement = smaller

Physical gate length. Typically, Lg is smaller than design rule
(technology node).

_——

|<— Lg Contact/Extension/Channel Resistance: Requirement = lower
Reducing resistance in Contact/Extension/Channel path
Increases conductance and raises switching speed

B — [+,

< Lon
1

Channel Length: Requirement = smaller
Effective gate length, which is smaller than Lg.

Junction Depth: Requirement = shallower

As channel length decreases, electric field interaction
results in leakage from Drain to Source when transistor
is Off (Short Channel Effect - SCE).

Shallower Xj reduces SCE leakage

Scaling Challenges Implant and Anneal Systems
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Technology Curve for Current PTORs and Process

= Boron TED is a
limiting factor to USJ
formation

10000

= Solid solubility limit
of B in Si and fast
diffusion of B must
be overcome

R4

Low Energy Implant and
. Spike Anneal
1000 - ¢

(&

L J
65nm /
90Nnm
L 2

130nm

=  Shallow and Abrupt
implant profiles
required

=  Productivity is
challenge for USJ
doping
- lower energies Need to push to lower Xj/Rs
- higher doses to meet requirements

- additional implants

Sheet Resistance (ohms/sq)

100 \ \
0 100 200 300 400 500 600

Junction Depth (A)

Current Generation tools and typical low energy implant/spike anneal
process do not meet ITRS requirements
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Technology Curves for Shallow Junctions

Key Metrics/trend
xj &
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Minimizing
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Process and hardware improvements extend Quantum and Radiance to 90nm
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65nm USJ: Carbon Co-Implant + Spike Anneal
Partnership with IMEC
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= Junction depth and abruptness improved with C co-implant

Quantum X + RadiancePlus
extend to meet customers’ 65nm requirements.
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Millisecond Anneal Capability for 65nm USJ
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Activation without Diffusion will extend USJ to the 45nm node
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Technology Curves for Shallow Junctions

Key Metrics/trend
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Process and hardware improvements extend Quantum and Radiance to 90nm
New technology development enables Xj/Rs scaling to continue
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Strained Silicon
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Applied Materials Suite of Stress Inducing Films

Pre-Metal Dielectric (PMD)
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High Stress Nitride for NMOS/PMOS Ion-Ioff (IBM, 2003)

1.E-08 i
Low tas’l 90nm MOSFET, Tensile stress
= Strei Y 1.4GPain etch stop
2 1e07 | i Conventional <0.7Gpa
NMOS 571 TR ( pa)
g High :
:. . _-Hlll Liner tensile
. stress
AL
1.E-08 t t t t
0.7 0.8 0.8 1.0 1.1 1.2
lom {rmddum)
1.E-04
1E.05 1 yod
: Low né"_.““
_ tensile adt
§1E'DE’ stress f&«’\ High
< t il
PMOS £ _, “ stress
- a 40
T Optimized strain engineering
; enabling high performance NMOS
1.E-08 bt - -
0.2 03 0.4 05 06 with no |mpaCt on PMOS

Better NMOS performance (8%) and

lon {mA/um)

no PMOS degradation.

performance with minimum
manufacturing complexity.

Ref.: V. Chan et al, "High speed 45nm Gate Length CMOSFETSs Integrated Into a 90nm Bulk Technology Incorporating Strain Engineering,” IBM
Microelectronics (SRDC), IEDM 2003, Washington DC.
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Strain Engineering for High Performance Logic

High Stress
Film NMOS

TEM of 45 nm gate length device using SiN in TEM of PMOS device where SiGe in the
tensile stress to improve NMOS drive current (10% source/drain areas are used to induce
Improvement in ldsat)) compressive stress in the Si channel (25%
Ref.: T. Ghani et al, “A 90 nm High Volume Manufacturing Logic Technology Featuring Novel improvement in Idsat)

45nm Gate Length Strained Silicon CMOS Transistors,” Intel Corp., IEDM 2003, Washington, D. C.

Intel uses both SiN overlayer and SiGe recessed S/D for strained Si
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Modeling Localized Strain

Compressive stress Compressive stress

in channel Tensile stress in channel in channel

Simulations courtesy of Synopsys

JDP with Synopsys provides understanding for process optimization
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Elevation improves device performance
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S/D elevation improves drive current but the effect saturates at ~40nm
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Recent Recessed SiGe IMEC Transistor Data
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60%06 drive current improvement demonstrated with 120nm recessed etch.
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AMAT/IMEC/Synopsys Strained Si IEDM 2004 Paper

A Systematic Study of Trade-offs in Engineering a Locally Strained pMOSFET
F. Nousi, P. Verheyen', L. Washington, V. Moroz'. I. De Wolf', M. Kawaguchi. 5. Biesemans®, B Schreutelkamp, V. Kim M .Shen. X Xu", R. Rooyackers', M.
Turczak!, G. Eneman'* , K. De L-Ie:,'etl'3'+, L. Smith®, D Pramanil®, H Forstner, G. Higaslu
Applied Materials, Sunnyvale, CA TISA; ! IMEC, Lewven, Belginm; ES}'u-::'psys, Mountain View, CATSA; *Research assistant of The Fund for Scientific Re-
search - Flanders (Belgium); *K.U Leuven, ESAT-INSYS, 3001 Leuven, Belgium

Abstract
We present results of a study on the impact of process parameters on
strain-enhanced performance of a pMOSFET with recessed SiGe
5/D. Recess depth, layout sensitivity, and the subsequent impact on
strain and hole mobility are explored. Micro-Raman Spectroscopy
(LRS), process and device simulations and electrical results are dis-
cussed.

1s still very uniform, but at a lower level of 622 MPa. Mobility en-
hancements and degradations due to the different stress components
1s summarized in Fig 8 This table 15 obtained based on the classic
piezoresistance model [7], which is reported to provide reasonable
accuracy in [8] as well as in this work.

The piezoresistance model for the stress enhanced hole mobility has
been applied to the simulation of 40nm pMOSFET performance in

5iGe
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N
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Figure 2: Influence of %2Ge on stress in the chanmel measured by Raman spectroscopy. The

stress 15 calcnlated from the Raman shoft assuming wmaxial stress. Both samples have T0nm

etch depth and ne undercut.

(edW)ssans

Figure 3: Cross section TEM showing SiGe in the
source/drain area

Leading Development on Recessed S/D Strained SiGe
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NMOS and pMOS stress contours

NMOS Geometry pMOS Geometry

Btress 4

Linear

Includes stress from
tesile STI1 and tensile ESL

Includes stress form tensile STI,
SiGe and compressive ESL

Courtesy of Synopsys
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