

IRSE300

Metrology of: •SOI •SiGe / SGOI Strained Si Bipolar and others 2005

AVS – Thin Film users

 SOI is relevant to a wide range of applications, each taking advantage of a different thickness of the silicon layer. (Source: SiGen)

Thick SOI

DDRA Thick SOI : Repeatability

30 Static measurements in CCD mode

DEFRA Sensitivity to Roughness

Cos(DELTA)

WaveL.(µm)

Sensitivity to Roughness

Cos(DELTA)

SOPRA

WaveL.(µm) WWW.SOPra-sa.com

JUPRA Thin SOI : Mapping 200 mm

Thin SOI on 300 mm

DDRA Thin SOI on 300 mm : mapping.

DPRA Thin SOI on 300 mm : Dynamic Repeatability

Dynamic Repeatability test

CCD mode measurement

5 dynamic measurement on 5 sites with load/unload. 1 second measure per point.

SOI / SiO2.

The Thicknesses are in Å. SOI layer.

Measurement	1	2	3	4	5	Standart deviation / site]
Site 1	436.77	437.6	436.75	436.44	436.57	0.45	
Site 2	391.19	392.14	391.31	391.06	391.02	0.46	
Site 3	427.34	426.93	426.35	427.18	427.44	0.44	
Site 4	446.36	445.75	445.82	446.08	445.56	0.31	0.50
Site 5	375.34	373.42	374.38	373.88	373.27	0.84	Mean of standart deviation
Wafer Mean value	415.40	415.17	414.92	414.93	414.77		
					(0.25	
					Standart dev	viation of mean	

Bottom oxide layer.

Measurement	1	2	3	4	5	Standart deviation / site]
Site 1	2019.85	2019.25	2019.62	2020.05	2020.08	0.34	
Site 2	2000.99	2001.09	2000.63	2000.68	2001.06	0.22	
Site 3	2010.9	2010.54	2010.78	2010.85	2010.66	0.15	
Site 4	2021.04	2021.29	2020.98	2021.9	2021.29	0.36	0.26
Site 5	2009.43	2009.64	2009.39	2009.83	2009.82	0.21	Mean of standart deviation
Wafer Mean value	2012.44	2012.36	2012.28	2012.66	2012.58		
-					0).16	
					Standart dev	viation of mean	

Ultra-Thin SOI

Fitted and Measurements Curves

JOPRA

JOPRA

62 points mapping

2) SiGe / SGOI

- SiGe analysis
 - Alloy model
 - Strained stacks
 - Relaxed stacks
 - Graded stacks
 - Strained Si
 - SGOI/SSOI
- Infra Red S.E. characterization
 - Boron concentration

Methodology

Why Alloy versus EMA

EMA model takes only into account changes in amplitude Alloy takes into account both changes: wavelength and amplitude

Building of the strained Alloy model

JOPRA

📕 Stsg.all - Notepad			- 🗆 🗵		
<u>F</u> ile <u>E</u> dit <u>S</u> earch <u>H</u> elp	25 -	Extrapolatio	on by a polync	ome of third or	rder
	20	•			
STSG064, 0.064 Measured by SIMS	20 -				
STSG123, 0.123 WEASUICA DY ONVIO	•	\mathbf{i}			
STSG169,0.169	- 15 -			•	SiGe
5	8 10		×		Polynomial (SiGe)
1.1053,-0.896,0.396,0	10 -				
3.31,-0.28,0,0 2.302 -1.325 0.0245 0	5 -		×		
3.4230.794.0.193.0	Ū		\sim		
4.42,-0.03,0,0	CE-		1		
weasured by	J E 3.	00 3.10	3.20 3.30	3.40	
These are data for allow modelization:			E1 (eV)		
the first number represents the number of files which are a	13 C U				
then comes the list of the files with the corresponding cor	ncentrati	lons			
then the number of critical points which are used in the ca	alculati(the der	N(Andance			
of the critical points with the concentration	j che dej	<i>indance</i>			
(from top to bottom: increasing order of the critical point	t, _.				
from left to right: increasing power of concentration for a	a given o	% Ge	E1(eV)	E1 + <u></u> 1 (eV)	E2 (eV)
IMPORTANT: the name of this file MUST be the generic name of	of the in	0	3.35	3.42	4.27
(six first characters) plus the extension .ALL .		6.4	3.28	3.42	4.28
DOTO propayed after Dickeying's results for styping Siver	(4_0).	12.3	3.20	3.42	4.28
x has to be less than 0.029	(I-X).	16.9	3.12	3.31	4.30
CPs are: Eindgap, E1, E1+d1, E2		22.9	3.06	3.27	4.30
Pafarancas					
			لع		
				opra-sa.co	m

DDRA 300 mm Mapping capability

Repeatability

			Si	Ge	(% Ge	
Native oxide		Average		248.45	Å	11.61	%
SiGe (12 % 250 Å)		Max	2	252.16	Å	11.78	%
Silicon		Min	2	245.26	Å	11.39	%
Silicoli		σ		2.039	Å	0.090	%
		<u>3σ</u>		6.118	Å	0.271	<mark>%</mark>
		Si cap		SiGe		% Ge	
Native oxide	Average	1491.67	Å	579.91	Å	4.83	%
Silicon (1500 Å)	Max	1496.49	Å	585.09	Å	5.18	%
SiGe (5 %, 600 A)	Min	1487.51	Å	573.86	Å	4.52	%
Silicon	σ	2.259	Å	2.560	Å	0.136	%
	<u>3σ</u>	6.776	Å	7.680	Å	0.407	<mark>%</mark>
		Si cap		SiGe		% Ge	
Native oxide	Average	693.89	Å	641.59	Å	10.64	%
Silicon (700 Å)	Max	699.01	Å	648.20	Å	10.94	%
SiGe (11 %, 600 Å)	Min	682.98	Å	637.54	Å	10.22	%
Silicon	σ	2.090	Å	1.449	Å	0.142	%
Silicoli	3σ	6.269	Å	4.348	Å	0.427	%

50 static measurements

Si on SiGe on SOI

SIGe on Insulator (SGOI)

S.E. measurement & regression on SiGe on Insulator :

- thickness and concentration of SiGe
- thickness of Si
- thickness of BOX.

SGOI-SSOI

	Native Oxide Thickness (Å)	Si Layer Thickness (Å)	SiGe Layer Thickness (Å)	Ge Concentration in SiGe (%)	SiO2 Layer Thickness (Å)
Min.	21.6	201.5	374.7	23.5	1323.7
Max.	21.9	202.0	376.3	23.6	1333.4
Range	0.3	0.5	1.6	0.1	9.7
Average	21.7	201.7	375.4	23.6	1328.7
St.Dev.	0.07	0.13	0.32	0.03	2.08

Measurement at 75 degrees AOI

SGOI-SSOI

No influence of tilt or twist

Strained PMOS gate

SE measurement of the SD stack => PMOS on SOI

DOPRA

LEVEL	TYPE	MIX/LAW	THI CKNESS	3	
AMBIENT	SINGLE		0	VOID.nk	
LAYER 1	SINGLE		0.000678	Sio2.nk	
LAYER 2	SINGLE		0.036192	Stsg.all Alloy Conc. = 13.326%	
LAYER 3	SINGLE		0.044048	Si100_2.nk	
LAYER 4	SINGLE		0.14136	Sio2.nk	
SUBS TRATE	SINGLE		0	SICR.nk	

Picture from: T Ghani, Portland technology dept, Intel Corp, IEDM 2003

•The SD region is etched.

Selective Epitaxial growth of
 SiGe in the SD region

•The SiGe induces a compressive uniaxial strain in the channel region. www.sopra-sa.com

JOPRA

B doped SiGe

Sin(2PSI)Cos(DELTA)

							Sheet
Slot #	sige Thickness (A)	Sige %	dopant	thickness IR	N (at/cm3)	dN (at/cm3)	resistance
2	895	14.7	В	NA	1.60E+19	2.18681E+18	507.2
3	450	14.8	В	NA	NA	NA	NA
4	952	14.3	В	983	7.72704E+19	3.17191E+18	239.5
5	520	14.4	В	476	1.35011E+20	3.89018E+18	290.1
6	564	14.3	В	546	2.17502E+20	4.49871E+18	158.6

Sin(2PSI)Cos(DELTA)

Model: Drude Law

Drude law:

$$\mathcal{E}_{1}(\omega) = \mathcal{E}_{\infty} - \frac{\omega_{p}^{2}}{\omega^{2} - \omega_{\tau}^{2}}$$
 ω_{p} : plasma frequency
Material analysis
 $\mathcal{E}_{2}(\omega) = \frac{\omega_{p}^{2}\omega_{\tau}}{\omega(\omega^{2} - \omega_{\tau}^{2})}$ ω_{t} : scattering frequency
Electrical properties
Conductivity of the film $\sigma = \varepsilon_{0} \frac{\omega_{p}^{2}}{\omega_{\tau}}$
Free carrier density N through $N = m^{*} \frac{\varepsilon_{0}\omega_{p}^{2}}{e^{2}}$
Free carrier mobility μ $\mu = \frac{e}{m^{*}\omega_{\tau}}$

B doped SiGe

DPRA

		Tool/ product wafer	Enabling t	echnology	
1)	SiGe Emitter	XRD, SIMS, XRR	No	IRSE300	Yes
2)	N+ Poly Emitter	4PP, SIMS	No	IRSE300	Yes
3)	Thin P/P+ Epi	FTIR, SIMS, 4PP	No	IRSE300	Yes
4)	N+ Buried collector	FTIR, SIMS	No	IRSE300	Yes
5)	Poly SiGe	XRR, XRD	No	IRSE300	Yes
6)	B doped SiGe	SIMS, 4PP	No	IRSE300	Yes
	base contact 2 mitter provided and the second and t	Contacts poly n ⁺ pol SiGe SiGe ga SiGe p ⁻ p ⁻ p ⁺ Si(100) substrate	y ate n+ §	7nm gat p+ r	5 ooly SiGe SiO2

Bipolar: Graded SiGe

Ambient

10.9

10.9

10.8

10.8

10.9

10.91

11.10

10.80

0.84

686.5

688.5

689.5

689.5

686.5

687.57

689.50

686.50

0.16

Dynamic repeatability:

- 1. Graded structure with cap
- 2. Product wafer

sio2 T(A)

m1

m2 m3

m4

m5

m6

m7

m8

m9

m10

m11

m12

m13

m14

m15

mean

% sigma

max

min

DOPRA

- 3. measurement time: 1 second per site
- Pattern of 100x150 um 4.

29

30

29.8

29.5

30.8

29.8

31.3

31.3

30.1

30.4

31.3

30.6

31.1

31.1

30.41

31.30

29.00

0 70

2.41

30

15 load /unload with pattern recognition 5.

193

200

199

199

204

198.27

204.00

192.00

1.54

140

141

148

149

150

143.87

150.00

138.00

2.65

353.5

347.5

342.5

341.5

332.5

345.43

354.50

332.50

1.56

5

5

5

5.1

5.4

5.08

5.40

4.80

2.80

SiGe 3

11%

350 Å

SiGe 1

150 Å

5%

Si

substrate

-T (Å)

0.16% repeatability On Total thickness of the epi stack

DPRA Si / SiGe / SiGe graded / SiGe on SOI on Si

By looking at the spectrum we are able to see two areas. The range 2 to 2.6eV represents interference from the SOI layers. The information regarding the cap and the SiGe layers are in the range 2.5-4.5eV.

So, to analyze this sample we have decided to make **two pass** in the regression.

The first one will give use SOI thicknesses, while the second one with give us other layers informations. JOPRA

Si / SiGe / SiGe graded / SiGe on SOI on Si SOI Analysis

LAYER 7	Mixed	Bruggeman	2.7323	Polarization Coeff. = 0.3333 Component nº1 : Sicr Conc. = 1.062 Component nº2 : Void Conc. = -6.2124E-02	
LAYER 8	Single		0.316640	Sio2.nk	
SUBSTRAT	Single		(T+	sicrink	

Measurement File n°1 : #13-SCA 3 - Ellipsometric Data, Fit on Alpha & Beta for Analyzer angle = 45°

RESULTS:

Regression Spectral Range (eV) : From 2.000 To 2.400 Confidence interval = 2Sigma Statistical measure of goodness of fit (sigma) : 3.9880E-03 Number of iterations : 2

Fit on Parameters :

Parameter 1 : Thickness (um) = 2.7323 ± 4.1496E-02 Parameter 2 : Conc. file 2 = -6.2124E-02 ± 2.2833E-02 Parameter 3 : Thickness (um) = 0.316640 ± 6.0807E-03

By modeling the full structure with the target values of each layer and by fitting only on SOI layers thicknesses between 2 and 2.6eV, we obtained the following results :

	Target	Result
Si	2.5 um	2.73 um
SiO2	300 nm	316 nm

Si / SiGe / SiGe graded / SiGe on SOI on Si

Thickness and Ge	∕₀ within a	tight range
------------------	-------------	-------------

- Total thickness accurately and repeatably
- •Average Ge% of the ramp + thin box
- •Ge% of the box below

DOPRA

•Thickness of the SOI (inhomogeneity of SOI don't affect SiGe accuracy)

Measurement done on product wafer with small spot

	100	10	- D4	CHATTE PI	ROOTORE
LEVEL	TYPE	HIX/LAW	THI CKNESS		
AHBIENT	SINGLE	••••••••••••••••••••••••••••••••••••••	0	VOID.nk	
LAYER 1	SINGLE	8	1.406487	Sio2.nk	
LAYER 2	SINGLE		24.74058	sicr.NK	
LAYER 3	SINGLE	8	12.23043	Stsg.all	Alloy Conc. = 4.2218
LAYER 4	SINGLE		20.58502	Stsg.all	Alloy Conc. = 18.916%
LAYER 5	SINGLE	3	2732.3	sicr.NK	
LAYER 6	SINGLE		316.6	sio2.NK	
SUBSTRATE	SINGLE	e	0	SICR. nk	

JOPRA Thin P / P+ Epi layers

Thin P/P+ epi layers

10 static measurements in the center of the wafer.

Meas n°	T(μm)	N (at/cm³)

1	0.3235	3.23E+19
2	0.3233	3.22E+19
3	0.3225	3.20E+19
4	0.3223	3.21E+19
5	0.3238	3.21E+19
6	0.3220	3.21E+19
7	0.3237	3.21E+19
8	0.3220	3.21E+19
9	0.3231	3.21E+19
10	0.3227	3.21E+19

Max	0.3238	3.23E+19
	0.0220	0.202-17
Mean	0.3229	3.21E+19
Std Dev.	0.001	6.3E+16
Std Dev.(%)	0.2%	0.2%

SiC epilayers

SOPRA

SiC epilayers

200 mm / 300 mm with FOUP or SMIF interface

Full Automation

Pattern Recognition and Autofocus

User-friendly interface

4 channels: UV-Visible OMA CCD OMA NIR IR Ellipsometer

UV-VIS CCD SE is:

- 1. High speed measurement.
- 2. Single grating monochromator.
- 3. CCD detector based.

OMA-NIR SE is:

- 1. High speed measurement.
- 2. Single grating monochromator.
- 3. InGaAs PDA based detector
- 4. Near IR enhanced $(1.7\mu m)$ m.

Fixed polarizer, rotating analyzer ellipsometer coupled to a Fourier Transform Spectrometer

Edge Grip Sample holder

200 mm (without Edge Grip)300 mm

PEEK material in contact with the wafer Contamination specs: 1E10Atm/cm2

• Thank you !!!

Contact: Laurent Kitzinger
 Lkitzinger@soprainc.com