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Jets Plating Cell

US Patent 5,421,987
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Anodes/Jets Assembly

Anodes/Jets Assembly.  U.S. Patent 5,421,987.
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Diffusion Layer Distributions
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Wafer Uniformity
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Transitions: Field to Trench Array

Plating Rate: 15 mA/cm2 ~ 0.35 µm/min. Plating Rate: 120 mA/cm2 ~ 2.8 µm/min.
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Profile Scan: Field to 0.35/0.35µm

Leading Vendor’s Tool
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Profile Scan: Field to 0.35/0.35µm

JECD Tool
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FIB Cross-Section
Top Surface

Cross-Section

Courtesy of Accurel, Inc.
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FIB Cross-Section
Top Surface

Cross-Section

Courtesy of Accurel, Inc.
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AFM Surface Roughness, 120 mA/cm2
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AFM Surface Roughness, 15 mA/cm2
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Model of Inhibition Leveling
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JECD Enhanced Superfill Model
C

on
c.

 o
f I

nh
ib

ito
r(

s)
, C

CF1

Distance, X
0

C
on

c.
 o

f I
nh

ib
ito

r(
s)

, C

Distance, X
0

CF2

X∆ 1

JECDConventional ECD

X∆ 2

Wafer Surface
Wafer Surface

∆X1 » ∆X2



Slide 15,  NCCAVS-TFUG 10/18/04UC Consulting

JECD Enhanced Superfill Model
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JECD Enhanced Superfill Model
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JECD Enhanced Superfill Profile

JECDConventional ECD
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Superfilled Trenches
(a) (b)

Cleaved samples plated at 120 mA/cm2 (~2.8 µm/min), showing superfilled trenches after: 
(a) partial filling, and (b) complete filling.
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Jets-ECD Isolated Trenches

0.175µm wide (bottom); 1.4µm deep; AR = 8.0:1
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Jets-ECD Dense Trenches

0.19µm wide (bottom); 1.4µm deep; 
AR = 7.37:1

0.16µm wide (bottom); 1.4µm deep; 
AR = 8.75:1
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Jets-ECD Dense Trenches

Transition: Field to trench array.  Trenches: ~0.125µm wide (bottom); 
~1.41µm deep; AR ~ 11.3:1.
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Jets-ECD Dense Trenches

FIB cross section.  Filled trenches: ~0.10µm wide (bottom); 
~1.41µm deep; AR ~ 14:1
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Jets-ECD Dense Trenches

Etched cross-section.  Trenches: ~ 0.07µm wide 
(bottom); ~1.41µm deep; AR ~ 20:1.
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Jets-ECD Dense Trenches

~0.05µm

1.41µm

Lightly etched cross-section.  Trenches: ~ 0.05µm 
wide (bottom); ~ 1.41µm deep; AR ~ 28:1.
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JECD Summary
Demonstrated:

Jets-ECD (JECD) filling of openings down to ~ 0.05µm, 
with AR ~ 28:1
JECD plating rate of up to 2.8 µm/min (8X faster than 
others), with smooth bright deposits; no spikes, 
bumps, or humps, using 2 additive system (others use 
a third “leveler” additive component)
Smooth anodic dissolution, without particle generation
Very wide JECD process latitude (>100% of additives, 
and >400% of current density)
One Issued Patent and two Pending Applications
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Problems with Cu Seed Layers

Reference [1]
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Ideal Seed Layers (SL) 
Fully continuous sidewalls and bottom coverage 
of high-AR (HAR) openings with negative slopes, 
yet thin enough inside openings to avoid 
pinching-off or sealing the features
Sufficient thickness on the field for adequate 
surface conduction (to minimize “Terminal 
Effect”) for good plating uniformity 
Excellent adhesion to the barrier, without any 
poor-adhesion spots, such as on negative slopes
Consistent, robust, and highly reliable process
High throughput deposition equipment
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Combined Conformal and Non-
Conformal Cu Seed Layers[2-7]

Independent sidewalls and field coverages
Fully continuous, thin uniform coverage of 
bottom and sidewalls (including negative 
slopes)
Adequate field thickness for void-free filling 
and plating uniformity
Excellent adhesion to barrier
Robust and consistent process with high 
yields and reliability
High deposition throughput: ~70 WPH
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(a)

Conventional Seed Layers
(b)

Conventional Cu seed layers.  (a) PVD seed layer; combined (Cu plus barrier): ~2,000Å on field and .100Å on 
lower sidewalls; vias: ~0.25µm wide; 1.90µm deep; AR ~ 7.6:1.   (b) CVD seed layer; combined (Cu plus 
barrier): ~450Å on field and sidewalls; trenches: ~0.13µm wide; 1.4µm deep; AR ~ 10.8:1
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Problems with a Non-Conformal 
PVD Seed Layer

High Aspect Ratio (HAR) Opening

PVD Cu seed layer

voiding precursor

Electroplated Cu

Electrofilling
discontinuities

void
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Entrapped Electrolyte In Voids

Gap-Filled Results: 0.10µm, 4.5:1 A/R vias; gap-filled demonstrated using 
500Å thick PVD Cu seed  – from Applied Materials’ Website (Semicon 2003).  
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Problems with a Non-Conformal 
PVD Seed Layer

PVD Cu S.L.       Low Reliability/Yields
» Negative slope sidewalls in retrenching features and 

in undercut crevices, nooks, and recesses[8] (due to 
over-etched multiple dielectrics  in Single and Dual 
Damascene features)

» Non-Conformal PVD deposition results in 
inadequate sidewall (or step) coverage, leading to 
filling-voids and stress-induced voiding (SIV)[9-11] 

» Simultaneous exposure of barrier and Cu SL to 
electrolyte accelerates the SL corrosion.  Interfacial 
stress at the SL/Barrier interface also accelerates 
SL corrosion.  Cu SL corrosion leads to filling voids
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Problems with a Non-Conformal 
PVD Seed Layer

» Preplating activation in the electrolyte is compromised 
or eliminated, leading to impaired adhesion.  Also, 
initial plating current density must be high enough to 
suppress SL corrosion.  This may result in “terminal 
effect” and impair superfilling capability

» Interfacial oxides and poor-adhesion of electroplated 
copper onto exposed barrier sites result in filling-voids 
and/or SIV-precursors 

» Microvoids coalesce (under thermal and/or electrical 
stresses) to larger voids, resulting in vias void pulls[1]
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Problems with a Non-Conformal 
PVD Seed Layer

Dual Damascene

Negative 
slopes

voiding precursors

Electroplated Cu
Cu seed layer

Etch-Stop Layer

Electrofilling

Capping/Etch-Stop Layer
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Problems with Other Seed Layers
Conformal ALD, CVD, Electroless, and 
ECD Cu Seed Layers (on barrier)
» Slow deposition results in low throughput
» Too thick on sidewalls, yet too thin on field
» Too thin SL on field: “terminal effect” (> 100%), 

filling-voids, and contact-loss by mechanical wiping 
and/or bipolar seed dissolution[12]

» Poor-adhesion of electroless and ECD Cu on barrier
» Poor uniformity and rough deposits (except ALD)
» High impurities and resistivity levels
» Electroless and ECD require additional equipment
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Problems with ECD & Electroless
“Repair” Seed Layer

High Aspect Ratio (HAR) Opening

Electrofilling

PVD seed layer

voiding precursors 
(poor-adhesion at 
ECD-Cu/Ta 
interface)

Electroplated 
Cu

Discontinuities 
in PVD layer

ECD seed layer (requires minimal
bridging thickness)
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Problems with ECD & Electroless
“Repair” Seed Layers

Electroless or ECD “Repair” SL (on PVD)[13-17]

» Electroless is extremely hard to control process: Erratic 
initiation time and deposition rate due to bath aging.  
Also, hydrogen blistering problems 

» Require minimum “bridging” of Cu on the sidewalls, 
thereby limited to certain size features

» Too thick on sidewalls yet too thin on the field
» Voiding-precursors at exposed barrier sites due to poor-

adhesion between ECD or electroless Cu and Ta barrier
» High level of impurities and resistivity of seed
» Slow deposition results in low throughput
» Require additional equipment
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Surface/Volume Ratio Increases 
With Shrinking line hight

l

h

w

R = A/V = 2(lw + lh + wh)/lwh  ≈ 2(w + h)/wh

Assume:   h1 =   w  (AR = 1:1);  R1 ≈ 4.0/w

Assume:   h2 = 4w  (AR = 4:1);  R2 ≈ 2.5/w 

R1/R2 ≈ 4.0/2.5 = 1.60   (60% higher!)
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RC Reduction by Thicker Lines

O. Hinsinger et al., “Trade tips for scaling interconnects”, EE Times, June 21, 2004[20]
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Low-AR Double-Whammy
Vias: Capacitance is inversely proportional to 
the dielectric thickness (d): C  =  kA/d
» Low-AR shallow vias increase capacitive (noise) 

coupling between adjacent metallization levels!
Lines: Low-AR shallow trenches impair lines 
resistance: R = ρl/wh
» For line width w < 0.10µm, line resistivity ρ increases 

exponentially due to surface and grain boundaries  
scatterings (longer aneals can reduce grain boundaries)

» RC delays increase with shrinking w and/or h
» Excessive power dissipation and heating EM & SIV
» Signal/noise (integrity) degradation (due to IR-drop)

The only reason for not using high-AR (HAR) is 
inadequacy of non-conformal PVD seed on HAR
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Combined Conformal and Non-
Conformal Cu Seed Layers[2-7]

Independent sidewalls and field coverages
Fully continuous, thin uniform coverage of 
bottom and sidewalls (including negative 
slopes)
Adequate field thickness for void-free filling 
and plating uniformity
Excellent adhesion to barrier
Robust and consistent process with high 
yields and reliability
High deposition throughput: ~70 WPH
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Multiple Seed Layers

PVD/CVD seed layers: ~600Å (including 
barrier) on sidewalls and ~1,700Å on field.  
Trenches: ~0.23µm wide (bottom); 0.85µm 
deep; AR ~ 3.7:1; tilt =30°.

PVD/CVD seed layers: ~450Å (including 
barrier) on sidewalls and ~1,000Å on field.  
Trenches: ~0.13µm wide (bottom); 1.4µm 
deep; AR ~ 10.8:1; tilt =30°.
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Multiple Seed Layers

0.10 µm

1.4 µm 0.045 µm

0.19 µm

0.10 µm

1.41 µm 0.045 µm

0.19 µm

(a) (b)
PVD/CVD seed layers: ~450Å (including barrier) on sidewalls and ~1,900Å 
on field.  Trenches: 0.10µm wide (bottom); 1.4µm deep; AR = 14:1. 
(a) Mag. = 20,000X; Tilt = 30° and, (b) Mag. = 40,000X; No tilt.
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Future Seed/Barrier Layers

ALD/PVD TaN/Ta barrier begins to make inroads
Excellent conformal bottom and sidewalls coverage 
for features # 0.10µm: by ALD (ALCVD) or CVD Cu
Adequate field thickness by PVD Cu, essential for 
robust electrofilling and wafer uniformity
Excellent adhesion to the barrier (PVD or ALD Cu)
Robust process and high yields and reliability
High deposition throughput (~70 WPH)
PVD & ALD or PVD & CVD Cu Seed combinations 
already provide all of the above! 
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Seed Layers Summary

Demonstrated:

Non-Conformal/Conformal PVD/CVD Cu S.L. for 
openings # 0.10µm (AR / 14:1), barrier plus seed:
~45nm on sidewalls, and ~190nm on field, with 
excellent continuous bottom and step coverage

Future: ALD & PVD or CVD & PVD combinations

U. Cohen’s IP[2]:  Four issued Cu Seed Layers 
Patents and four Pending Patent Applications 
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