Gas-Surface Interaction Modeling for Carbon Nanotube Deposition

D. B Hash, T.R. Govindan, M. Meyyappan *Center for Nanotechnology NASA Ames Research Center* D. Bose, B. Cruden *ELORET Corporation* K. B. K. Teo, R. G. Lacerda, N. L. Rupesinghe,

G. A. J. Amaratunga, W. I. Milne

University of Cambridge

Agenda: Gas-Surface Interaction in Parts

• Part One: Surface chemical kinetics model

• Part Two: Surface temperature model

Plasma Enhanced CVD for CNTs

 Aligned carbon nanotubes are essential for various potential applications of interest (fieldemission devices, biosensors, and interconnects).

Spaghetti

 Alignment in PECVD is a result of electrostatic forces generated by strong sheath fields*.

*Merkulov et al., Appl. Phys. Lett. **79**, 2970 (2001).

Aligned

NASA Ames dcPECVD Reactor

- dcPECVD first used by Z. F. Ren[†] to grow arrays of wellaligned multi-walled carbon nanotubes
- Grounded anode and dcbiased cathode with 3.8 cm separation
- 6.6 cm diameter cathode

[†]Ren *et al.*, Science **282**, 1105 (1998).

Governing 1-D Equations for SEMS code

Mass: $\frac{\partial \rho_s}{\partial t} + \frac{1}{4} \nabla \cdot AJ_s = W_s + \frac{2}{R} W_{s,w} + \frac{\rho_{s,i} - \rho_s}{r}$ **Neutral** Energy: $\frac{\partial}{\partial t} (\rho_n C_{v,n} T) + \frac{1}{A} \nabla \cdot A \sum_n q_s = Q_c + Q_{CE} - \sum_n \sum_r W_{s,r} \Delta H_r^\circ + \sum_n \frac{\rho_{s,i} h_{s,i} - \rho_s h_s}{\tau} + \frac{2}{R} Z_w$ $Electron \frac{\partial}{\partial t} \left(\rho_e C_{v,e} T_e \right) + \frac{1}{A} \nabla \cdot A q_e = -\frac{e}{m} J_e \cdot E - Q_c - \sum_{r} W_{e,r} \Delta H_r^{\circ}$ And Ion Energy: $\frac{\partial}{\partial t} (\rho_i C_{v,i} T_i) + \frac{1}{A} \nabla \cdot A q_i = \frac{e}{m_i} J_i \cdot E - Q_{CE} - \sum_r W_{i,r} \Delta H_r^\circ$ **Poisson:** $\nabla^2 \Phi = -\frac{\rho_c}{\varepsilon_0}$ **Drift and** $J_s = \rho_s \mu_s E - \frac{PD_s}{R_s T_s} \nabla \frac{P_s}{P} - \frac{D_s^T}{T_s} \nabla T_s$ **Diffusion: Heat Flux:** $q_s = h_s J_s - \kappa_s \cdot \nabla T_s - R_s T_s D_s^T \cdot \nabla \ln \frac{P_s}{R}$

Surface Formulation*

$$\sum_{s} v'_{sr} \chi_{s} = \sum_{s} v''_{sr} \chi_{s}$$

Surface Production Rate:

$$\mathbf{\acute{S}}_{s} = \sum_{r} \left(v_{sr}'' - v_{sr}' \right) q_{r}, \quad q_{r} = k_{f_{r}} \prod \left[X_{s} \right]^{v_{sr}'} - k_{b_{r}} \prod \left[X_{s} \right]^{v_{sr}''}$$

Gas Phase Concentrations: $[X_s] = \rho_s / M_s$ **Surface Concentrations:** $[X_s] = \frac{Z_s \Gamma}{\sigma_s}$

Gas-phase species: $J_s = \hat{S}_s M_s$

Surface species: $\dot{S}_{s} = 0$ **Deposited species:** $G_{s} = \frac{\dot{S}_{s}M_{s}}{\rho_{s}}$

*Coltrin, Kee, Rupley, and Meeks, SURFACE CHEMKIN-III, SAND96-8217, 1996.

dcPECVD Reactor Conditions

- Flow Rates: 22.5 sccm C_2H_2 , 80 sccm NH_3
- 22 Neutral Species: $H_2,H,CH_4,CH_3,CH_2,C_2H_4,C_2H_3$, $C_2H_2,C_2H,C_3H_3,C_3H_2,C_4H_2,N_2,N,NH_3,NH_2,NH,HCN,$ CN,HC_3N,CH_3CN,C_2N_2
- 7 Charged Species: NH₃⁺,NH₄⁺,C₂H₂⁺,C₂H₃⁺,H₃⁺,H₂⁺,e
- 9 Surface Species: Ni(S),H(S),C(S,R₃),CH(S,R₂), CH₂(S,R),CH₃(S),C₂(S,R₂),C₂H(S,R),C₂H₂(S)
- 148 Gas-Phase Reactions, 17 Surface Reactions
- DC Voltage Bias: 525 V Pressure: 4 Torr
- Anode: 450° C Cathode: 700° C

Downstream Residual Gas Analysis Results

Surface Reactions*: Supply-Limited Growth[‡]

Chemisorption $H + Ni(S) \Leftrightarrow H(S)$ $CH_3 + Ni(S) \Leftrightarrow CH_3(S)$ $C_2H_2 + Ni(S) \Leftrightarrow C_2H_2(S)$ Recombination $H + H(S) \Leftrightarrow H_2 + Ni(S)$ $H + CH_2(S,R) \Leftrightarrow CH_3 + Ni(S)$ Hydrogen Abstraction/Addition $CH_3(S) + H \Leftrightarrow CH_2(S,R) + H_2$ $CH_2(S,R) + H \Leftrightarrow CH_2(S)$ $CH_2(S,R) + H \Leftrightarrow CH(S,R_2) + H_2$ $CH(S,R_2) + H \Leftrightarrow CH_2(S,R)$ $CH(S,R_2) + H \Leftrightarrow C(S,R_3) + H_2$ $C(S,R_2) + H \Leftrightarrow CH(S,R_2)$ $C_{2}H_{2}(S) + H \Leftrightarrow C_{2}H(S,R) + H_{2}$ $C_2H(S,R) + H \Leftrightarrow C_2H_2(S)$ $C_2H(S,R) + H \Leftrightarrow C_2(S,R_2) + H_2$ $C_2(S,R_2) + H \Leftrightarrow C_2H(S,R)$ **Carbon Nanotube Formation** $C_2(S,R_2) \Leftrightarrow Ni(S) + 2 C(CNT)$

 1×10^{13} 5×10^{12} $8 \times 10^{10} \exp(-3.878 / T_{\odot})$ $1.3 \times 10^{14} \exp(-3.676 / T_{\star})$ 3×10^{13} $2.8 \times 10^{7} T_{s}^{2} \exp(-3878 / T_{s})$ 1×10^{13} $2.8 \times 10^{7} T_{s}^{2} \exp(-3878 / T_{s})$ 1×10^{13} $2.8 \times 10^{7} T_{s}^{2} \exp(-3878 / T_{s})$ 1×10^{13} $9 \times 10^{6} T_{s}^{2} \exp(-2518 / T_{s})$ 2×10^{13} $9 \times 10^{6} T_{c}^{2} \exp(-2518 / T_{c})$ 2×10^{13} [‡]Merkulov *et al.*, J. Phys. Chem. B 106, 10570 (2002). 00

Most Abundant Neutrals from Simulation

Surface Species and CNT Growth Rate

Part Two: Plasma Heating Effects in Carbon Nanotube Growth

- Recent work* demonstrates aligned growth of CNTs at 200 °C on plastic substrates with dcPECVD
- How significant is plasma heating of the substrate?
- Joint modeling/experimental effort undertaken by the Center for Nanotechnology and the University of Cambridge

*Hofmann et al., Appl. Phys. Lett. 83, 4661 (2003).

Cambridge dcPECVD Reactor

Cambridge dcPECVD Cathode Stage

Cambridge dcPECVD Reactor Conditions and Modeling Details

- Flow Rates: 72.5 sccm C₂H₂, 200 sccm NH₃
- 9 Neutral Species: H₂,H,C₂H₂,C₂H,N₂,N,NH₃,NH₂,NH
- 3 Charged Species: NH₃⁺, C₂H₂⁺, e
- 43 Gas-Phase Reactions
- dc Power Range: 0-200 W
- Pressure: 3.75 Torr

Stage - Gas Energy Balance

Gas:

Stage:

$$\sum_{n} \left(\kappa_{s} \cdot \nabla T + R_{s} T D_{s}^{T} \cdot \nabla \ln \frac{P_{s}}{P} \right) - (1 - f) h_{i} J_{i} = \frac{\rho \overline{c'}}{4} \frac{2\alpha}{(2 - \alpha)} C_{p} (T - T_{s})$$

Neutral Energy FluxReflected IonEnergy TransferredEnergyTo Stage*

*Leroy et al., J. Phys. D: Appl. Phys. 30, 499 (1997).

$$-fh_i J_i + \frac{\rho \overline{c'}}{4} \frac{2\alpha}{(2-\alpha)} C_p (T-T_s) = \sigma \varepsilon (T_s^4 - T_a^4) + h_c (T_s - T_a)$$

lon Energy Transferred Bombardment From Gas Energy[†] $f = \frac{1}{1 + (E_i/a)^{-b}}$

Thermal
RadiationConduction Through
Stage Apparatus

[†]Winters *et al.*, Phys. Rev. B **41**, 6240 (1990).

Summary

- A simple surface chemistry model has been incorporated into the NASA Ames SEMS code that provides reasonable agreement with inhouse experimental measurements of CNT growth rate.
- Plasma heating in dcPECVD growth of carbon nanotubes can obviate the need for resistive heating of substrates.
- Future work will involve further development of the surface chemistry model and extension of the governing equations to 2-D.

