

# Ultra-Low k Spin-on Polymer; Benefits, Challenges and Solutions for Damascene Integration

Don Frye

Semiconductor Fab Materials

Dow Chemical Co.

donfrye@dow.com







# **Acknowledgements**

- \*J. Hsu, S. Cummings, K. Foster, K. Itchhaporia, M. Mills, C. Mohler, A. Oshima, J.G. Song, J. Waeterloos, R. Woods
- \*\*Ensemble\* Dielectric Solutions Development Team
- \*\*porous SiLK\* Dielectric Development Team
- \*\*SiLK\* Semiconductor Dielectric Development Team
- **\*\***SFM Application Lab Team





# ITRS 2001 - Dielectric needs

| Year of Production                                                           | 2001      | 2004      | 2007      | 2010      |
|------------------------------------------------------------------------------|-----------|-----------|-----------|-----------|
| DRAM 1/2 PITCH (nm)                                                          | 130       | 90        | 65        | 45        |
| Interlevel metal insulator - effective dielectric constant (k)               | 3.0 - 3.6 | 2.6 - 3.1 | 2.3 - 2.7 | 2.1 - 2.4 |
| Interlevel metal insulator (minimum expected) - bulk dielectric constant (k) | < 2.7     | < 2.4     | <2.1      | < 1.9     |

- K-effective is the goal!
  - ⇒ ILD material selection and integration choice is open
- Most companies will use the same low k ILD material for 2 technology generations but achieve a lower k-effective with a different integration scheme for the second generation.
- •Different low k materials can potentially leapfrog each other at successive technology generations







# Low k Spin-on Polymers

\*\*Benzocyclobutene k = 2.7

#Fluorinated Polyimide k = 2.5 - 2.9 \*

\*\*Perfluorocyclobutane k = 2.4

\*\*Polyarylene k = 2.8

\*\*Polybenzoxazole k = 2.6 - 2.9 \*

\*\*Polynorbornene k = 2.5

\*\*Polyphenylene k = 2.6



<sup>\*</sup> anisotropic materials exist in these polymer families



### **SiLK Semiconductor Dielectric Properties**

Thermal Stability @ 450 °C

**Glass Transition** 

Dielectric Constant @ 1 MHz

Refractive Index @ 633 nm

Moisture Uptake (25 °C / 85% RH)

**Expansion Coefficient** 

Film Stress @ 25 °C

**Thermal Conductivity** 

Voltage Breakdown

Hardness (indentation)

Modulus (indentation)

Toughness

Strength (tensile)

< 1% / hr weight loss

> 490 °C

2.6 (isotropic)

1.62

< 0.24 % (wt)

62 ppm / °C (50-150 °C)

60 MPa (tensile)

0.23 W / mK @ 125 °C

> 4 MV/cm

0.29 **GP**a

3.6 MPa

 $0.62 \text{ MPa m}^{1/2}$ 

93 MPa

This does not look like Oxide!







### Low k Spin-on Polymer Material Property Benefits

# Initial Cu<sup>+</sup> Drift Rates



Ref: Loke et al., "Copper Drift in Low-K Polymer Dielectrics for ULSI Metallization," presented at the 1998 Symposium on VLSI Technology (Honolulu, HI), June 9, 1998.

• Low k Spin-on Polymers have Cu drift rates approaching SiN and are more then 10<sup>4</sup> times lower then oxide or oxide based (OSG) ILD materials







### Low k Spin-on Polymer Material Property Challenges



- Modulus and hardness will decrease for all materials when voids (air) is introduced
- •At k<2.6, all ILD materials will have a modulus significantly less then the metal conductor (Cu)







# Low k Spin-on Polymer Material Property Solutions Fracture Toughness



- Toughness determines CMP survivability not hardness or modulus for polymers.
- •Polymers have almost the same toughness as oxide and are significantly tougher then OSG materials at equivalent k values







### **Low k Spin-on Polymer Integration Processes**



Hybrid ILD Integration

Buried Etch Stop Integration Timed Etch Integration



### Technology Advancement

- Extendible K-effective roadmap
- Leveraged development knowledge through multiple technology generations
- CoO reduction roadmap







### Low k Spin-on Polymer Hybrid Integration Processes







Oxide Hybrid ILD Integration FSG Hybrid ILD Integration OSG Hybrid ILD Integration



- Extendible K-effective roadmap
- Leveraged development knowledge through multiple technology generations
- Multiple Low k strategy entry points







### Low k Spin-on Polymer Integration Modules

# **Challenge**

Dielectric Dep.

Lithography

Etch

Clean

**Metal Barrier** 

**CMP** 

**Packaging** 

Reliability

**Extendibility** 

Availability of integrated all spin-on dielectric stack **Solution** 

All dielectric layers deposited sequentially with a single final cure per interconnect layer!

| Ensemble HM |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|-------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Ensemble EB |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Ensemble CS | Francisco de la Colonia de Sancia de Caración de Carac |
| Porous SiLK |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Ensemble ES |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Porous SilK |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|             | 200 nm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |







### **Low k Spin-on Polymer Integration Modules**

Dielectric Dep.

Lithography

Etch

Clean

**Metal Barrier** 

**CMP** 

**Packaging** 

Reliability

**Extendibility** 

# Challenge

Compatibility with 248nm, 193nm, ... photoresist **Solution** 

Most low k spin-on polymer materials do not contain any amine (NH) structures nor are they prone to amine absorption during etch and clean processing!







### Low k Spin-on Polymer Integration Modules





### Low k Spin-on Polymer Integration Modules

# Challenge

Dielectric Dep.

Lithography

Etch

Clean

**Metal Barrier** 

**CMP** 

**Packaging** 

Reliability

**Extendibility** 

Etch of high aspect structures in damascene integration **Solution** 

Dual Hard mask materials offer an etch selectivity of greater then 20:1!

• Both "timed etch" and "buried etch stop" integration schemes have been demonstrated



Courtesy of Tokyo Electron, Ltd.







# Porous SiLK

mec Before wet clean processing After wet clean processing

Dielectric Dep.

Lithography

Etch

Clean

**Metal Barrier** 

**CMP** 

**Packaging** 

Reliability





- → Depending on the etch chemistry
- → Post etch clean removes this material prior to metallization
- → Cleaning similar to dense SiLK





# Low-k Materials in CMP Minimum Toughness/Adhesion Threshold to survive CMP



Ohta et. al., JAPS Sept. 2000







• Higher Bond force is necessary to ensure intimate contact between the wire and bond pad.



- Inter metallic coverage and ball shear value was observed slightly less due to less efficient energy transfer to the wire/pad interface.
- With careful optimization of bond process parameter or wire bond pad design, good bond with tensile failure on the bond wire at the neck during wire pull can be achieved





# **Sequential Processing Modeling**





### Simulation Steps

- step 1: SiLK(1) cured at 400C
- step 2: Cool down to 20C
- step 3: Heat up to 350C
- step 4: Numerical CMP of TaN(1)
- step 5: TaN(1) deposition
- step 6: Cool down to 100C
- step 7: Numerical CMP of Cu(1)
- step 8: Cu(1) plating
- step 9: Heat up to 350C
- step 10: SiN(1) deposition
- step 11: Heat up to 400C
- step 12: SiLK(2) cured at 400C
- step 13: Cool down to 20C
- step 14: Heat up to 350C
- step 15: Numerical CMP of TaN(2)
- step 16: TaN(2) deposition
- step 17: Cool down to 100C
- step 18: Numerical CMP of Cu(2)
- step 19: Cu(2) plating
- step 20: Heat up to 350C
- step 21: SiN(2) deposition
- step 22: Cool down to 20C





### **Stress of Stacked Via Structure**

### Simulation Steps

step 1: SiLK(1) cured at 400C step 2: Cool down to 20C

step 3: Heat up to 350C

step 4: CMP of TaN(1)

step 5: TaN(1) deposition

step 6: Cool down to 100C

step 7: CMP of Cu(1)

step 8: Cu(1) plating

step 9: Heat up to 350C

step 10: SiN(1) deposition

step 11: Heat up to 400C

step 12: SiLK(2) cured at 400C

step 13: Cool down to 20C

step 14: Heat up to 350C

step 15: CMP of TaN(2)

step 16: TaN(2) deposition

step 17: Cool down to 100C

step 18: CMP of Cu(2)

step 19: Cu(2) plating

step 20: Heat up to 350C

step 21: SiN(2) deposition

step 22: Cool down to 20C







# **Stress during Thermal Cycle**

Dielectric Dep.

Lithography

Etch

Clean

**Metal Barrier** 

**CMP** 

**Packaging** 

Reliability

**Extendibility** 

# After Step 22







### Low k Spin-on Polymer Integration Modules

Dielectric Dep.

Lithography

Etch

Clean

**Metal Barrier** 

**CMP** 

**Packaging** 

Reliability

**Extendibility** 

\*Extendibility is the key to maintaining pace with the ITRS and the IC Industry

\*\*Leveraging 70-80% of the process knowledge from the previous technology node is as important as high utilization of the existing tool set







# Low k Spin-on Polymer Extendibility <u>Microstructure Challenges</u>

Dielectric Dep.

Lithography

Etch

Clean

**Metal Barrier** 

**CMP** 

**Packaging** 

Reliability



















### Low k Spin-on Polymer Extendibility



# **Templated Pore Solution**

"one poragen yields one pore"

Poragen ⇒ Pre-formed nano-particles

# Inherent advantages:

- doesn't rely on nucleation and growth
- less process dependent

# Technical challenges:

- < 10 nm size is a new frontier</li>
- particles must be isolated
- requires a metal free process







### Low k Spin-on Polymer Extendibility

Dielectric Dep.

Lithography

Etch

Clean

**Metal Barrier** 

**CMP** 

**Packaging** 

Reliability









# Low k Spin-on Polymer Extendibility

# Porous SiLK Evolution: V1 ⇒ porous SiLK

Dielectric Dep.

Lithography

Etch

Clean

**Metal Barrier** 

**CMP** 

**Packaging** 

Reliability



















### Low k Spin-on Polymer Extendibility Sil K

|                 |                                    | SILK | V /  |
|-----------------|------------------------------------|------|------|
| Dielectric Dep. | К                                  | 2.65 | 2.35 |
| Lithography     | D <sub>avg</sub>                   | NA   | 25   |
| Etch<br>Clean   | (nm)<br>Modulus                    | 3.6  | 2.8  |
| Metal Barrier   | (GPa @ 1 um) Hardness (GPa @ 1 um) | 0.27 | 0.17 |
| СМР             | CTE                                | 62   | 62   |

| * | DC | W |  |
|---|----|---|--|
| * |    |   |  |
|   |    | * |  |
|   |    |   |  |

**Porous** 

SiLK

**V8** 

| K                                            | 2.65      | 2.35   | 2.20   | 2.10   |
|----------------------------------------------|-----------|--------|--------|--------|
| D <sub>avg</sub><br>(nm)                     | NA        | 25     | 16     | < 10   |
| Modulus<br>(GPa @ 1 um)                      | 3.6       | 2.8    | 2.7    | 2.8    |
| Hardness<br>(GPa @ 1 um)                     | 0.27      | 0.17   | 0.16   | 0.15   |
| CTE                                          | 62        | 62     | 62     | ~ 62   |
| Toughness / Adhesion (Mpa-m <sup>0.5</sup> ) | > 0.35    | > 0.35 | > 0.35 | > 0.35 |
| Process<br>Temperature<br>( <sup>O</sup> C)  | 400 – 450 | 430    | 430    | 400    |
|                                              | 1         |        |        |        |

• Extendible material that leverages processing knowledge



**Packaging** 

Reliability





### Low k Spin-on Polymer Extendibility

Log-Normal Distributions for Porous SiLK<sup>Tm</sup>

Dielectric Dep.

Lithography

Etch

Clean

Metal Barrier

CMP

Packaging

Reliability

**Extendibility** 



• Continual reduction in pore size (closed) and pore size distribution

•Good barrier metal integrity







# Pore Size Impact on Yield





→ 25 m meander line required to observe electrical differences (50 m effective length)





# **Summary**

# Challenges for Low k Spin-on Polymers

\*\*Polymer mechanical properties are not like oxide and will require different integration and design mindset

# Benefits of Low k Spin-on Polymers (SiLK)

- \*Chemistry is unchanged since the mid 1990's
- \*Compatible with all existing process modules and tools
- \*Extendible versions, lower dielectric constant (k=2.1), are already available
- \*Existing materials meet ITRS targets for k and k-effective through 45nm technology
- \*\*Have passed full reliability qualification at 130nm and 90nm
- \*In manufacturing at 130nm already



