

JSR Spin-on dielectrics

JSR LKD-5109 Low k Challenges Beyond 100 nm NCAVS-TFUG October 16, 2002

Contents

- Roadmap
- Properties of JSR LKD-5109
- Integration of LKD-5109
 - Challenges
 - ISMT product line
 - ISMT result highlights
- Summary

Low-k Challenges for CMP

Crystal ball beyond 100 nm (k= 1.9 - 2.5)

Does conventional abrasive-based CMP work?

Yes, and it requires only process optimization

Reduced head pressure (1-3 psi)

Optimized head design, *pad, slurry*, ...

• Why so?

JSR can address these issues through its material technology

CMP is not the only process requiring mechanical integrity of low-k

containment of copper migration under heat and current stress caused by the packaging and application of chips

Slipping roadmap for low-k

Roadmap		Year of First Product Shipment	199 7	1999	2000	2001	2002	2003	2004	2005	2006	2007	2008	2009	2010	2011	2012	2013	2014	2015	2016
1997		Technology Node	250 nm	180 nm		150nm		130 nm			100 nm			70 nm			50 nm				
	NA	Interlevel metal insulator—effective dielectric constant (A)	3.0 - 4.1	2.5 - 3.0		2.0-2.5		1.5 - 2.0			1.5 - 2.0			<u><</u> 1.5			<u><</u> 1.5				
		Technology <mark>Node</mark>	250 nm	180 nm			130 nm			100 nm			70 nm			50 nm			35		
1998 Update	NA	Minimum interlevel metal insulator—effective dielectric constant (k)	3.0 - 4.1	2.5 - 4.1			1.5 - 2.0			1.5 - 2.0].,		<u>≤</u> 1.5			<u>≤</u> 1.5					
				180 nm			130 nm			100 nm			70 nm	1		50			35		
1 9	MPU	Interlevel metal insulator—effective dielectric constant (k)		3.5-4.0	3.5-4.0	2.7-3.5	2.7-3.	2.2-2.7	2.2-2.7	1.6-2.2			1.5			<1.5			<1.5		
9	soc	Interlevel metal insulator—effective dielectric constant (k)		3.5-4.0	3.5-4.0	2.7-3.5	2.7-3.5	2.2-2.7	2.2-2.7	1.6-2.2			1.5			<1.5			<1.5		
9	DRAN	Interlevel metal insulator—effective dielectric constant (k)		4.1	4.1	4.1	3.0-4.1	3.0-4.1	3.0-4.1	2.5-3.0		:	2.5-3.0			2.0-2.5			2.0-2.3		
				180 nm		130 nm			90 nm				60 nm	_		40			30		
U 2 p	MPU	Interlevel metal insulator—effective dielectric constant (k)		3.5-4.0	3.5-4.0	2.9-3.5	2.9-3.5	2.2-2.9	2.2-2.9	1.6-2.2			1.6			<1.6			<1.3		
b 0 0 a	MPU	Interlevel metal insulator—BULK dielectric constant (k)		2.9	2.9	2.7	2.7	2	2	1.3			1.3			<1.3			1.1		
0 t e	soc	Interlevel metal insulator—effective dielectric constant (k)		3.5-4.0	3.5-4.0	2.7-3.5	2.7-3.5	2.2-2.7	2.2-2.7	1.6-2.2			1.5	•		<1.5			<1.5		
	DRAN	Interlevel metal insulator—effective dielectric constant (N)		4.1	4.1	4.1	3.0-4.1	3.0-4.1	3.0-4.1	2.5-3.0			2.5-3.0			2.0-2.5			2.0-2.3		
2 0 0 1				180 nm		130 nm			90 nm				60 nm		18.	40			30		
	MPU	Interlevel metal insulator—effective dielectric constant (N				3.0-3.7	3.0-3.7	2.9–3.5	2.5–3.0	2.5–3.0	2.5-3.0	2.0–2.5			2			1.9			1.7
	MPU	Interlevel metal insulator (minimum expected) —bulk dielectric constant (k)				2.7	2.7	2.7	2.2	2.2	2.2	1.7			1.6			<1.6			1.5
	DRAN	Interlevel metal insulator—effective dielectric constant (k)				4.1	3.0–4.1	3.0–4.1	3.0–4.1	2.5–3.0	2.5–3.0	2.5–3.0			2.5-3.0			2.0-2.5			2.0-2.3

October 13, 2002

Material	k=4.1	k=3.5	k=2.6 - 3.2	k=2.0 - 2.5	Process	Vendor
	SiO2	1		l	CVD	-
Inorganic		F-SiO2		l	CVD	-
			FOx	l XLK	Spin-on	Dow Corning
			LKD-2020	LKD-5109	Spin-on	JSR
			I IPS2.5	uPLK	Spin-on	CCIC
			I HOSP	Nanoglass-E	Spin-on	Honeywell
			I	PPSZ-M	Spin-on	Clariant
			I	ALCAP-S	Spin-on	Asahi Chemical
Hybrid			HSG RZ26	HSG 6210	Spin-on	Hitachi Chemical
			OCD	OCL	Spin-on	Tokyo Ohka
		<u> </u>	l 	Zircom	<u>Spin-on</u>	Shipley
		1	BlackDiamond	BlackDiamond 2	CVD	Applied Materials
)	CORAL	I POLA	CVD	Novellus
		1	FlowFill	Orion	CVD	Trikon
			SiLK	Nautilus	Spin-on	Dow Chemical
Organic			Ī	?	Spin-on	Sumitomo Bakelite
			FLARE	FLARE GX3	Spin-on	Honeywell

From JSR Seminar, 2001 December

Typical Curing Sequence of JSR LKD

October 13, 2002

Schematics of P-MSQ

- Doness of cure depends on residual free Si-OH
- Correct indicators of cure need to be chosen.
 Detect residual Si-OH groups and moisture uptake.
 ⇔ n, k, IR, outgassing, etc.

Concept of JSR LKD (Polymer Design)

Precursor (Soluble)

- SiO: Partially crosslinked silsesquioxane (High heat resistance)
- OH: Heat-curable group
- R : Hydrophobic group (Methyl, Phenyl, etc)

Low k Film (Insoluble)

Fully crosslinked silsesquioxane without hydroxyl group

LKD-5109 offers ...

Superior material properties

Low dielectric constant, high modulus, Small CTE, ...

Successful integration

Baseline process information through industry consortium Sematech, IMEC, Selete, Leti, ...

Commercial Cu/LKD-5109sample availability

Sematech wafer service

- Readiness for the commercial use
- Extendibility of ILD technology Keeping eye also on k <2.0 ranges

JSR	JSR Micro JSR											
	JSR LKD L											
			EI	LK	VLK							
	Cure method	Thermal	Special	Thermal	Thermal	Thermal						
	Product name	LKD-6103	LKP-6102	LKD-5109	LKD-5115	LKD-2020						
	Product stage	∎ &D	■ R&D ■	Product	Product	Product						
	Final Cure Temp.	420 C	350 C	420 C	420 C	420 C						
	Dielectric constant: K	1.91	2_01	2.20	2.34	2.55						
	Refractive index	1 201	■ 1.226 ■	1.248	1.279	1.316						
	Modulus: E (GPa)	2.1	5 .4	4.5	6.4	8.0						
	Thermal conductivity			0.235	0.247	0.301						
	Specific Gravity	e .82	0.90	0.93	1.00	1.13						

All of these JSR LKD products can be described generically as (porous-)MSQ material IITC 2002 poster

CTE Advantage LKD-5109 (MSQ based Low-k) has CTE comparable to Copper

MSQ = <u>Inorganic</u> back bone polymer

Chemical Compatibility of JSR LKD

Chemical		рH	Etch Rate (nm /h)	Si-CH3Retation (%)	k value increase
HF	0.05%	<1.0	-16	99	0.02
Etch C èan A	NH4F base	10	-24	99	-0.01
Etch C ean B	0 manic acid base	10	-8	100	0.02
CMP Silumy A	Neutral	6.0	-11	102	0.00
Etch C ean C	Solventbase	66	-3	100	0.02
CMP Slurry B	Amine base	104	-8	100	0.03
Etch C ean D	Organic am ine base	124	-7	100	00.0
НА	PRDevlopper	13.4	0	80	0.12

Exposure: 25C/20 min

JSR LKD have a good chemical compatibility over a wide range of pH. Incompatibility can be seen in HF base solutions and Hydroxyamine base solutions

FT-IR Spectra

Hydrophobicity

JSR Micro JSR

• Why we measure it?

Degradation of k value

Blistering etc during heat cycle

• How we measure?

Screening test can use:

FTIR

Success criteria should include:

k value and $\Delta k = k(25C) - k(200C)$ TDS (MS)

TDS Fragment Cure Temp. Dependency

k measurement at 200 °C is to eliminate moisture effect in k value.

October 13, 2002

TEM Observation of LKD-5109

October 13, 2002

Integration Challenges of JSR LKD

Known integration issues for JSR LKD

- Side wall damage (Etch / Ash)
 Degas, Increase dielectric constant.
 Adhesion to BM.
- Void formation
- Chemical Corrosion (Stripper)
- Photoresist poisoning
- Delamination, scratch, ... (CMP)

Possible Integration Interactions of JSR LKD

After Patterning, Etch, Ash, ...

Ash damage and Photoresist poisoning can be avoided by dual H.M. scheme. Etch and Dep. damages are still present even with dual H.M. scheme.

Metal 1 Copper CMP Test Wafer Dual Damascene Cross-Section

* Not to scale

Example of available structure (Source www.sematech.org)

ISMT LKD Test Wafer with 800AZ Mask

Metal 2 Copper CMP Test Wafer Dual Damascene Cross-Section

* Not to scale

Example of available structure (Source www.sematech.org)

October 13, 2002

Integration Issues: Strength/Adhesion

- Low strength and adhesion challenge CMP
- Cap loss must be avoided with porous low-k
- Alternatives to CMP
- Tiling

JSR LKD-5109 Integration at ISMT

3LM Lot; 0.3 μ m Via Chain

Structure to support packaging activity to mimic real-world integration.

JSR LKD-5109 Integration at ISMT

M2 Long Serpentine/Comb Structure

Package Results; Gold Wirebond II

JSR Micro JSR

- Momentum for the spin-on low-k material is building up rapidly.
 - Publication

IITC 2002 and Semicon/West 2002 coming

Commercial sample availability

JSR for liquid and ISMT for wafer

- JSR LKD-5109 technology has demonstrated extendibility beyond K < 1.9
- JSR LKD-5109 is accumulating integration knowledge at the device manufactures, tool venders, and research consortiums.