Thermal Stress and Reliability Characterization of Cu Interconnects

Katsuyuki Musaka

ECP Technology Dept. CMP/ECP Product Business Group Applied Materials, Inc.

Cu Interconnects Reliability

IITC'02 Summary for EM/SM Issue

No	Category	Author Information			Device	Process	Summary/Comment		
NO.	Category	First	Last	Affiliation	Device	1100033			
7.5	EM	A. Fischer	F. Ungar	Infineon	DLMASTM Std Via EM (Via/Trench =	USG-TaN(Ta)-Cu- SiN	Bimodal TTF distribution=early branch via-voiding+late branch trench-voiding Upstream-stressed via; ealry mode(n=1.1, Ea=0.86eV), late mode(n=1.6, Ea=0.83eV). Optimal M2 barrier eliminated early branch, and achieved monomodal by trench-voiding Downstream-stressed vias; ealry mode(n=1.1, Ea=0.9eV), late mode(n=1.5,		
				0.28um/0.4umWx400umL)			Ea=0.9eV). Optimal M2 barrier pre-clean eliminated early branch, and achieved monomodal by trench-voiding		
10.1	SM	A. Glasow	A. Fischer	Infineon	DLM (M1 Trench/Via/M2 Trench = 0.28umWx100umL/0.28um/ 0.28umWx4umL)	USG-Cu-W-Al- SiN	Bimodal TTF distribution=early branch w hole metal line voiding(mode1 Ea=1.4eV; Cu grain boundaries)+late branch Cu/SiN interface voiding(mode2 Ea=0.9eV) at T > 225C. Monomodal mode 2 distribution at T < 225C.		
13.4						USG-Cu-SiN	Monomodal TTF distribution(Ea=1.2eV) at 225C < T < 275C.		
							4 steps for void formation; 1. Vacancy generation through thremal cycle. 2. Vacancy migration by stress gradient. 3. Vacancy accumulation. 4. Void formation		
7.4	SM	N. Okada	N. Nakamura	NEC	DLM NEC Special SM (M1 Trench/Via/M2 Trench = 0.14umW/0.13um/20umWx 20umL)	USG-TaN(Ta)-Cu- SiN	SM testing @ 150C/350C ~10days. OBIRCH for identifing via failure; >3.0umWx3.0umL M2 DD degraded via chain yield, but not with SD. SR-EXAFS for atomic bond structure; Cu-Cu distance continuously expand 2.2A(RT)~5.5A(350C), which could be related to SM failure		
10.5	SM	T. Suzuki	H. Yagi	Fujitsu	DLM (Via/Trench = 0.22- 0.27um/0.28- 8umWx20umL)	FSG?-TaN-Cu	SR-XRD 3D stress measurement in micro-structure; Via $z >>$ Trench z especially at trench $>$ 1um. Pillars in trench increase trench z to match w ith via z , and resulted low er SM failure rate.		

Failure distributions (AR/R=1%) obtained on samples of Cu-W-Al chains at different storage temperatures. A distinct bimodality is found for T>225%C. The early branch (mode 1) becomes more and more pronounced for higher temperatures.

MTFs (left scale) determined on samples of Cu-W-AI chains for both modes suggest a larger activation energy Ea for mode 1. The percentage of failures belonging to mode 1 (right scale) increases with stress temperature but vanishes below 250PC.

Fig.6 Failure modes observed at Cu-W-Al via-line transition after storage at 275°C. Mode 1: Early failures are caused by large voids in the whole metal line segment. Mode 2: Later failures are due to smaller voids at the Cu-SiN interface.

Ref; A. Glasowet.al. (IITC'02)

EM; barrier/Cu interface dominant SM; Cu grain boundary(early failure), Cu/SiN interface(late failure) dominant ⇒ Cu alloy for EM/SM early failure, and metal passivation for SM late failure

Cu Alloy Technology

Literature Search - Cu Alloy for Interconnect

Publication	Author Information			Material /	Process	Summary / Commonts	
rubileation	First	Last	Affiliation	Device		Summary / Comments	
J. Appl. Phys. Jan'98	L.Clevenger	J.Harper	IBM	Cu-Sn	Electron Beam Evaporation	Study of interdiffusion and phase formation in films of Sn/Cu. Complete intediffusion of Cu and Sn from a Sn/Cu bilayer 0.5-1.0mm thick requires annealing temperatures and times in excess of 350-400C for 30 min. Contamination of the copper surface by air	
Proc. of IITC, June'01	C.Wang	D.Erb	AMD	Cu-Sn/Cu- In/Cu-Zr	PVD Seed	0.3~1.2 at.% Sn, In, Zr Cu alloy examined. Reduction of Cu agglomeration on TaN barrier observed, which suggests suppression of Cu mobility at Cu/barrier interface, thus reduces EM. Dopant redistribution rate; Sn>In>Zr. Cu resistivity increase per 1 at.% alloy element (μ ohm-cm); In(1.1) < Sn(3.6) < Zr(18). 1KA CuSn(0.3 at.%) seed with 250C post ECP anneal improved EM 2X.	

Studied as dopant(at.%) for Cu EM Ti(0.48) > Ti (0.22) > Zr(0.14) > Be(10) > Mg(2) > Sn(0.53)

Ref; C.Wang et.al. (IITC'01)

Figure 3: Metal-line resistance data of CuSn as functions of CuSn thickness (500Å or 1000Å) and anneal temperature.

Figure 4: Failure distribution plot for EM data comparing effect of different Cu-Sn layer thickness. The post plating anneal temp is 250C.

Advantage of Cu alloy; EM/SM improvement Process technology of choice; PVD seed, electrolytic plating

Metal Passivation Technology Literature Search - Metal Passivation for Cu Interconnect

Publication	Author Information			Material /	Process	Summary / Comments		
Tublication	First	First Last Affiliation		Device	1100033	Summary / Comments		
Proc. of IITC, June'01	T.Saito	H.Yamaguchi	Hitachi	W Selective / Cu Interconnect	CVD	H2(pre) and HF(pre and post) treatment enhance selectivity and resulted short yield improvement. No yield degradation after 500hrs of BTS. ~10% RC delay improvement with 0.2 μ m 4 layer Cu/USG interconnect Bi-CMOS device by eliminating SiN cap layer.		
Proc. of IITC, June'02	T.Itabashi	H.Akahoshi	Hitachi	CoWB Selective / Cu Interconnect	Alkaline (TMAH) DMAB E-less	Simulation; 30% RC reduction at 0.2um w / metal cap. Co alloy plating w /o Pd activation (Rs increase) by DMAB. Alkaline free bath w ith TMAH. Prevent Cu diffusion up to 500C for 30min, w hile CoWP failed at 400C.		
Proc. of IITC, June'02	H.Kondo	N.Shimizu	Fujitsu	ZrN Blanket / Cu Interconnect	MOCVD	<20nm ZrN behaves as dielectric on USG and metal on Cu, self aligned cap. Resistivity estimated <200uohm-cm. ZrN capped Cu Rs stable with 450C 1hr anneal. WLR Line EM; ZrN Cap(Ea=0.74eV) > No ZrN Cap(Ea=0.71eV). TZBD; ZrN/USG(11.6MV/cm) > USG(7.4MV/cm). T		

Fig.1. Comparison of the simulation results of the normalized delay time between various interconnect structures. Assumed k value of low-k material is 2.5.

w/o SiN cap, with W cap 100 with SiN cap, w/o W cap 80 Percentage Ave.=34.7 Ave.=37.2 60 402034 36 37 38 39 40 33 35 Delay Time (arb. units)

Fig.8(b). Comparison of the delay time using ring oscillator between the optimized W capping process and the control (w/o W cap). In case of W capping process, RC delay of wiring was reduced due to the absence of SiN capping layer.

Ref; H.Kudo et.al. (IITC'02)

Ref; T.Saito et.al. (IITC'01)

Ref; T.Saito et.al. (IITC'01)

Advantage of metal passivation; RC reduction, EM/SM improvement Process technology of choice; CVD, MOCVD, electroless deposition

Approach for Cu Interconnects Reliability Improvement

Summary

- Advantage of metal passivation; RC reduction, EM/SM improvement
- Process technology of choice; CVD, MOCVD, electroless plating
 - Selective CVD W; Well known technology. Confirmed Cu barrier properties, RC improvement, and SM performance. Concern for selectivity management
 - Selective electroless Co; Well studied technology in different industry. Confirmed Cu barrier properties, but no evidence for EM/SM improvement. Difficulty in managing selectivity with good control over feature size and dielectric material dependence
 - Blanket MOCVD ZrN; Interesting ZrN material characteristic. Confirmed Cu barrier properties and EM improvement, but no much advantage for RC reduction
 - ALD, PVD; No report
- Possible other electroless technology applications; Cu barrier, Cu seed repair, Cu direct plating, gate salicide(i.e. CoSi)

Approach for Cu Interconnects Reliability Improvement

Summary

- Advantage of Cu alloy; EM/SM improvement
- Process technology of choice; PVD seed, electrolytic plating

PVD seed; limitation of alloy element selection by thermal interdiffusion and redistribution controllability. Demonstrated CuSn feasibility for EM improvement.

Electrolytic plating; Well studied technology in different industry. Limitation of alloy element selection by coplatability due to reduction potential difference and thermal redistribuiton controllability. Difficulty in managing low alloy element concentration (<1 at.%) with practical plating chemical management and process tuning parameters. No evidence for for EM/SM improvement.

MOCVD, Ion implantation; No report

Possible other alloy elements; Ag, Cd, Zn

Thermal Stress and Reliability Characterization of Barriers for Cu Interconnects

K. Musaka, H. Wang, B. Zheng, K. Wijekoon, C. Marcadal,
L. Chen, J. Lin, G. Dixit, R. Cheung, K. Watanabe², K. Ohira²,
T. Hosoda², M. Yamada², K. Miyata³, T. Hasegawa³, S. Kadomura³

APPLIED MATERIALS, INC. 3303 Scott Blvd. Santa Clara, CA 95054 USA FUJITSU LTD.² 1500 Mizono Tado, Mie 511-0192 Japan SONY CORP.³ 4-14-1 Asahi Atsugi, Kanagawa 243-0014 Japan

Thermal Stress and Reliability Characterization of Barriers for Cu Interconnects Contents

Maximizing Cu Interconnects Parametric Yield

- Via Chain Yield Degradation by Cu De-Wetting
- Cu De-Wetting Mechanism
- Optimizing Post ECP Annealing for Cu De-Wetting

Improving Cu Interconnects Thermal Stability

- Cu Void Generation by Hot Storage Testing
- Barrier Evaluation for Cu Void Generation Resistance
- Cu Void Generation Mechanism
- Barrier Evaluation for Device Applicability

Via Chain Yield Degradation by Post ECP Annealing Via Chain Yield vs. Post ECP Annealing Condition

ECP Cu 1.3µm/PVD Cu 150nm/PVD TaN 25nm on SiO₂/Si Substrate

Post ECP	Furr	nace	Hot Plate	Nh Annealing	
Annealing Condition	350C, 30min	250C, 30min	350C, 2min		
0.30um 400K Bordered	13.3%	26.7%	16.7%	100.0%	
0.28um 400K Bordered	10.0%	23.3%	10.0%	100.0%	
0.26um 400K Bordered	6.7%	10.0%	3.3%	93.3%	
0.24um 400K Bordered	0.0%	0.0%	0.0%	90.0%	
0.22um 400K Borderless	0.0%	6.7%	0.0%	86.7%	
0.22um 3M Bordered	0.0%	0.0%	0.0%	56.7%	
0.22um 3M Borderless	0.0%	0.0%	0.0%	40.0%	

Voltage Contrast & TEM

Cu De-Wetting in 1/50K~100K Via Hole Resulted in 0% Via Chain Yield Applied Materials Proprietary Information

Cu De-Wetting Mechanism in Via Hole ECP Cu Thermal Stress Hysteresis

Blanket ECP Cu 1.3µm/PVD Cu 200nm/PVD TaN 25nm on SiO₂/Si Substrate

Un-Treated ECP Cu Showed High Tensile Cu/Barrier Residual Stress

Cu De-Wetting Mechanism in Via Hole - Cont'd Hypothesis

- Excessive Thermal Treatment of ECP Cu Results in Cu De-Wetting Due to High Cu/Barrier Residual Stress
- Insufficient Post ECP Annealing Does Not Eliminate Cu De-Wetting on Further Thermal Cycle i.e. Interlayer Dielectric Deposition/Curing Final Annealing/Sintering
- De-Wetting Can Be Minimized by Optimizing Post ECP Annealing Condition

Optimizing Post ECP Annealing Condition Minimal Thermal Treatment for ECP Cu Stabilization Blanket ECP Cu 1.0μm/PVD Cu 200nm/PVD TaN 25nm on SiO₂/Si Substrate

Optimizing Post ECP Annealing Condition Minimal Thermal Treatment for ECP Cu Stabilization Blanket ECP Cu 1.0μm/PVD Cu 200nm/PVD TaN 25nm on SiO₂/Si Substrate

250°C, 30sec Hot Plate Annealing Showed Equivalent ECP Cu Film Microstructure

Ref; M. Chen (AMAT)

Optimizing Post ECP Annealing Condition - Cont'd ECP Cu Thermal Stress Hysteresis

Blanket ECP Cu 1.3µm/PVD Cu 200nm/PVD TaN 25nm on SiO₂/Si Substrate

Optimally Treated ECP Cu Showed Minimum Cu/Barrier Residual Stress

Optimizing Post ECP Annealing Condition - Cont'd Via Chain Yield vs. Post ECP Annealing Condition

ECP Cu 1.3µm/PVD Cu 150nm/PVD TaN 25nm on SiO₂/Si Substrate

Post ECP	Furr	nace	Hot Plate		Hot Plate
Annealing Condition	350C, 30min 250C, 30min 350C, 2min		NO Annealing	250C, 30sec	
0.22um 400K Borderless	0.0%	6.7%	0.0%	86.7%	100.0%
0.22um 3M Bordered	0.0%	0.0%	0.0%	56.7%	70.0%
0.22um 3M Borderless	0.0%	0.0%	0.0%	40.0%	80.0%

Via Chain Yield Was Maximized with Optimum Post ECP Annealing Condition

(No Other Systematic Defects Observed for Yield Loss)

Cu Void Generation in Via Hole by Hot Storage Testing

Cu Void Generation Observation

ECP Cu 1.3μm/PVD Cu 150nm/ PVD TaN 25nm on 0.22μm Hole SiO₂/Si Substrate Hot Plate Annealing @ 250°C, 30sec

Barrier/Seed ↓ ECP ↓ Hot Plate Anneal (250°C, 30sec) ↓ Cap Dielectric ↓ Hot Storage (120°C, 3weeks)

Cu Void Generation Observed by Hot Storage Testing

Evaluating Barriers for Hot Storage Testing Resistance Cu Void Generation vs. Barrier Material

ECP Cu 1.3μm/PVD Cu 150nm/Barrier on 0.22μm Hole SiO₂/Si Substrate Hot Plate Annealing @ 250°C, 30sec

Magnitude of Cu Void Generation Depends on Barrier Material

Cu Void Generation Mechanism in Via Hole Cu Wetting vs. Barrier Blanket PVD Cu 10-20nm/Barrier on SiO₂/Si Substrate

Void Generation Mechanism in Via Hole - Cont'd Cu Stress Hysteresis vs. Barrier Material

Blanket ECP Cu 1.3mm/PVD Cu 150nm/Barrier on SiO₂/Si Substrate Hot Plate Annealing @ 250°C, 30sec

Barriers with Low Cu/Barrier Residual Stress Resulted in Good Cu Void Generation Resistance

Void Generation Mechanism in Via Hole - Cont'd Cu/Barrier Film Properties

Barrier Material	PVD TaN	PVD Ta(N)	PVD Ta	CVD TiN	CVD TiSi N
Barrier Stress(dynes/cm2)	-3.E+10	-3.E+10	-3.E+10	-5.E+09	-5.E+09
Cu Wetting	Bad	Good	Good	Bad	Gœd
Cu/Barrier Stress Hysteresis (dynes/cm2)	3.10E+09	2.62E+09	1.70E+09	2.08E+09	1.63E+09
Cu Void Generation	Void	Void	Good	Void	Gœd

PVD Ta and CVD TiSiN Provided Better Cu Void Generation Resistance

Improvement of Cu Wetting and Cu/Barrier Residual Stress Lead to Cu Void Generation Suppression in Hot Storage Testing

- Cu/Barrier Interfacial Affinity

- Cu Bulk Structural Thermal Stability

Evaluating Barriers for Device Applicability Line and Via Resistance ECP Cu 1.3µm/PVD Cu 150nm/Barrier on SiO₂/Si Substrate

Hot Plate Annealing @ 250°C, 30sec

Line Resistance (0.4µm L/S, 1.76m Long) Via Resistance (0.28µm∳, 484k Vias)

CVD TiSiN Showed Comparable Line and Via Chain Yield with Reasonable Resistance to PVD Ta(N)

Evaluating Barriers for Device Applicability - Cont'd

Line to Line BTS Testing

0.24µm L/S @ 1.5MV/cm, 250°C

ECP Cu 1.3μm/PVD Cu 150nm/Barrier on FSG/Si Substrate Hot Plate Annealing @ 250°C, 30sec

Barrier Material	PVD Ta(N)	CVD Ti SiN
#Samples Passed/Tested	20/20	20/20
Test Time(Hr)	>320*	>320*

* Testing Aborted at 320 Hours

CVD TiSiN Showed Equivalent Barrier Performance to PVD Ta(N)

Thermal Stress and Reliability Characterization of Barriers for Cu Interconnects

Summary

- Parametric yield loss of Cu interconnects correlated to Cu de-wetting at via bottom
- Cu void generation during hot storage caused Cu interconnects thermal integrity degradation
- Cu/Barrier residual stress as a factor in Cu de-wetting and Cu void generation
- Optimum post ECP annealing process reduced Cu de-wetting and recovered parametric yield of Cu interconnects
- Barrier material plays a key role in Cu interconnects thermal stability, and PVD Ta and CVD TiSiN barrier showed better thermal stress resistance