Roadmap of SiGe BiCMOS technologies

Greg U’Ren

Conexant Systems
April 17, 2002
Continued dominance of bipolar in RFIC

- BJT/HBT higher performance than MOSFET
 - MOS moving from MHz to GHz
 - BJT moving from 1-2 GHz to >200 GHz

- Significantly lower cost than GaAs

- High-level integration complexity with BiCMOS technology at moderate cost penalty
Exceptional technological progress in <5 yrs
SiGe BJT on 6x faster performance curve
SiGe BiCMOS secures leading RFIC position

CMOS technology node trend comparison
BiCMOS and RF CMOS

- CMOS and BJT technology advances along near-parallel paths
- SiGe maintains performance advantage ~2x over MOS at 0.10 μm
Technology cost comparisons

- Cost curves advance near-parallel
- BiCMOS has moderate cost penalty over CMOS at same technology node
Performance-Cost comparisons

- Overall more performance at less cost
- Skewed curves with advantage to BiCMOS beyond 0.10\(\mu\)m
Wireless: 3G System Block Diagram

- Bluetooth™
- GPS
- 3G Radio
- 2.5G Radio
- WLAN

- A/D
- Baseband Processor (2.5G/3G)

- Power Amplifiers: GaAs or SiGe
- RF Subsystem: SiGe BiCMOS
- Baseband: CMOS

- Display
- Keypad
- Microphone
- Speaker
- Camera
Wireline: Optical Networking Block Diagram

Switch Fabric

Network Processor

Network Processor

Framer

Forward Error Correction (FEC)

Demux CDR

Lim Amp

Mux CMU

Optical Module

Receiver

TIA

PIN

Transmitter

Driver

Laser

10 Gb: CMOS / SiGe BiCMOS

40-80 Gb: SiGe BiCMOS / III-V

CMOS

III-V
Outline

- Device Design for 200 GHz F_t and F_{max}
- 0.18 μm SiGe BiCMOS Process Integration
Device optimization parameters

- Aggressive vertical scaling to minimize diffusion component
 - Band-gap engineering
 - Collector doping
 - Emitter resistance (Re)
 - Base width reduction (Wb)
- Aggressive lateral scaling to minimize depletion terms
 - Emitter width (We)
 - SA emitter

\[
f_T = \frac{1}{2\pi \tau_{ec}} = \left\{ 2\pi \left[R_e (C_{je} + C_{jc}) + \frac{kT}{qI_c} (C_{be} + C_{bc}) + R_c C_{bc} + \frac{W_b^2}{\eta D_b} + \frac{W_c}{2v_s} \right] \right\}^{-1}
\]

Depletion terms diffusion

\[
f_{\text{max}} = \sqrt{\frac{f_T}{8 \pi R_b C_{bc}}}
\]
Device Design for 200 GHz F_t and F_{max}

\[
\frac{(R_e + kT/I_c) (C_{be} + C_{bc})}{Wb^2 / (2 \, Db)}
\]
SiGe Collector Doping

\[
\frac{1}{F_t} \sim (R_e + kT/I_c) \times (C_{be} + C_{bc}) + \frac{W_b^2}{2D_b} + \frac{W_c}{2V_s} + R_c \times C_{bc}
\]

![Graph showing the relationship between normalized collector doping and peak frequency response.](image)
SiGe Emitter Resistance

\[\frac{1}{F_t} \sim (R_e + kT/I_c) (C_{be} + C_{bc}) + \frac{W_b^2}{2D_b} + \frac{W_c}{2V_s} + R_c C_{bc} \]
SiGe Emitter Resistance

\[
\frac{1}{Ft} \sim (R_e + kT/I_c) \left(C_{be} + C_{bc} \right) + \frac{W_b^2}{2D_b} + \frac{W_c}{2V_s} + R_c C_{bc}
\]

Re=0

Normalized Collector Doping

Peak Ft (GHz)

Normalized Collector Doping
SiGe Base Width

\[1/F_t \sim \left(R_e + kT/I_c \right) (C_{be} + C_{bc}) + \frac{W_b^2}{2D_b} + \frac{W_c}{2V_s} + R_c C_{bc} \]

Carbon Doping

- Reduces B diffusion
- Degrades mobility
- Increases \(E_g \)
- Reduces \(W_b \)
- Only small improvement in \(F_t \)
Base narrowing for performance gain

Performance contribution from base narrowing

\[F_t (GHz) \]

\[W_b^{-2} (\text{Å}^{-2}) \]
SiGe Base Width

Normalized Collector Doping

Peak F_t (GHz)

-25% Wb, Re=0

+12% Wb

Normalized Collector Doping

0 1 2 3 4 5

0 50 100 150 200 250 300 350
Lateral Scaling

\[
\frac{1}{F_t} \sim (R_e + kT/I_c) (C_{be} + C_{bc}) + \frac{W_b^2}{(2D_b)} + \frac{W_c}{(2V_s)} + R_c C_{bc}
\]

\[
F_{\text{max}} = \left(\frac{F_t}{(8\pi R_b C_{bc})} \right)^{1/2}
\]

Good scaling properties maintain \(F_t \) constant as \(W_e \) is reduced increasing \(F_{\text{max}} \).
200 GHz F_t/F_{max} opens the door to 80 Gb applications in Silicon

*Current required to reach peak F_t for minimum W_e and $L_e=1 \mu m$
• Device Design for 200 GHz Ft and Fmax

• 0.18 µm SiGe BiCMOS Process Integration
SiGe BiCMOS: Buried Layer Integration

Epi-Based
1. N+ Buried Layer Implant
2. Buried Layer Drive
3. N- Epitaxy

Lower Collector Resistance

Epi-Less
1. High energy N+ Buried Layer Implant

Lower Cost
Lower Collector Substrate Capacitance
SiGe BiCMOS: Isolation

Deep Trench

1. Deep Trench Etch
2. Deep Trench Oxide/Polysilicon Fill
3. N/Pwell Formation

4x Lower Collector-Substrate Capacitance

Lower Cost

Junction

- N/Pwell Formation
SiGe BiCMOS: Collector Implants

Used to differentiate multiple NPNs on the same wafer

Tradeoff between F_t, C_{bc}, and breakdown becomes a design variable
SiGe BiCMOS: Gate Formation

Gate formed prior to SiGe deposition to minimize thermal budget on NPN
SiGe BiCMOS: Emitter-Base Integration

QSA
- Lowest Cost
- High Rb

Selective Epi
- Easy “Plug-in” to Si NPN
- Cjc self-aligned to emitter
- Requires selective SiGe

Sacrificial Emitter
- Lowest Rb
- Best Scaling Properties

Extrinsic Base Implant
Spacer Separates Emitter From Extrinsic Base
SiGe BiCMOS: CMOS / Silicide

- NPN films completely removed from CMOS regions
- Silicide on all electrodes including emitter, base and collector
SiGe120 Cross-Section

6 Layers of Metal

1.5 fF/µm2 MIM Capacitor

25 Ω/sq Metal Resistor

NPN Transistor
Conclusions

• The bipolar device has continued dominance in RFIC space for the foreseeable future
 – SiGe has opened a permanent gap in performance vs. CMOS
 – SiGe BiCMOS Cost / Area / GHz is competitive with that of deep-subμ CMOS

• Aggressive vertical and lateral scaling has so far enabled 200 Ft/Fmax
 – Advancement of vertical profile largely responsible for gains
 – Further device / process optimization en route to 300Ghz