Silicon-Germanium:
from Microelectronics to Micromechanics

Tsu-Jae King
Department of Electrical Engineering and Computer Sciences
University of California, Berkeley, CA 94720-1770 USA

April 17, 2002

Outline

• Introduction
 – IC technology advancement

• Microelectronics Applications for SiGe
 – Poly-SiGe gate
 – SiGe raised source/drain

• SiGe MEMS Technology
 – Properties of poly-SiGe
 – Modular integration with CMOS

• Summary
IC Technology Advancement

Rapid advances in IC technology have been achieved primarily by scaling down transistor lateral dimensions.

- Technology Scaling
- Investment
- Better Performance/Cost
- Market Growth

Bulk-Si MOSFET

- Leakage current is the primary barrier to scaling
- To suppress leakage, we need to employ:
 - Higher body doping → lower carrier mobility, higher junction capacitance, increased junction leakage
 - Thinner gate dielectric → higher gate leakage
 - Ultra-shallow S/D junctions → higher R_{sd}

Metal-Oxide-Semiconductor Field-Effect Transistor:

Desired characteristics:
- High ON current (I_{dsat})
- Low OFF current
SIA Int’l Technology Roadmap for Semiconductors (2001)

<table>
<thead>
<tr>
<th>Year</th>
<th>2001</th>
<th>2002</th>
<th>2003</th>
<th>2004</th>
<th>2005</th>
<th>2006</th>
<th>2007</th>
</tr>
</thead>
<tbody>
<tr>
<td>Technology Node</td>
<td>130 nm</td>
<td>115 nm</td>
<td>100 nm</td>
<td>90 nm</td>
<td>80 nm</td>
<td>70 nm</td>
<td>65 nm</td>
</tr>
<tr>
<td>T_{ox}</td>
<td>Solutions</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>I_{dsat}</td>
<td>Being Pursued</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

- Advanced materials will be needed for bulk-Si MOSFETs to meet ITRS specifications

Why Silicon-Germanium?

- Compatible with Si
- Easily integrated into CMOS technology
- Properties can be tailored by adjusting Ge content
Properties of Si and Ge

<table>
<thead>
<tr>
<th></th>
<th>Si</th>
<th>Ge</th>
</tr>
</thead>
<tbody>
<tr>
<td>Band gap</td>
<td>1.12 eV</td>
<td>0.67 eV</td>
</tr>
<tr>
<td>Lattice constant</td>
<td>5.431 Å</td>
<td>5.646 Å</td>
</tr>
<tr>
<td>Carrier mobilities</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>1350 cm²/Vs</td>
<td>3900 cm²/Vs</td>
</tr>
<tr>
<td></td>
<td>480 cm²/Vs</td>
<td>1900 cm²/Vs</td>
</tr>
<tr>
<td>Melting point</td>
<td>1415°C</td>
<td>937°C</td>
</tr>
</tbody>
</table>

- Si₁₋ₓGeₓ properties are advantageous for
 - Band-gap engineering (e.g. HBTs)
 - Strain-engineered MOSFETs
 - Low resistivity source/drain contacts
 - Low-T processing (e.g. integrated CMOS/MEMS)

Outline

- **Introduction**
 - IC technology advancement

- **Microelectronics Applications for SiGe**
 - Poly-SiGe gate
 - SiGe raised source/drain

- **SiGe MEMS Technology**
 - Properties of poly-SiGe
 - Modular integration with CMOS

- **Summary**
Approaching 1.4 nm $T_{ox,eq}$

- **Use high-κ gate dielectric** (by 2005?)
 - Thicker physical thickness for given C_{gate} (F/cm2)
 - \Rightarrow lower gate leakage current
 - HfO$_2$ is a promising candidate
 - **Issues:**
 - Thermal stability
 - Interfacial SiO$_2$ layer \Rightarrow increased $T_{ox,eq}$
 - may be needed for good mobilities

- **Reduce/eliminate gate depletion effect**
 - Poly-Si$_{1-x}$Ge$_x$ or metal (by 2007?)
 - **Issues:**
 - Process compatibility
 - Work function

Poly-SiGe Gate

- **Advantages:**
 - Reduced gate depletion effect (GDE)
 - Less boron penetration through gate oxide
 - Process integration is straightforward
 - Work functions are appropriate
 - N+ poly-SiGe gate for NMOS
 - P+ poly-SiGe gate for PMOS

- **Optimal Ge content \sim20%**

- **Poly-SiGe on high-κ gate dielectric?**
Poly-SiGe/HfO$_2$ MOSFET

- PVD HfO$_2$ at UT Austin
 - Prof. Jack Lee’s group
- Conventional CMOS process flow
 - 800°C, 30m furnace anneal
 - +1000°C, 10 sec RTA
- Poly-SiGe gate yields lower T_{ox} (EOT)!
- Low gate leakage current maintained

![Graph showing gate capacitance vs. gate voltage](image)

Q. Lu et al., to be presented at 2002 VLSI Tech. Symp.

Poly-SiGe/HfO$_2$ Gate Stack

- Interfacial layer eliminated!
- EOT reduction similar to that achieved with surface nitridation (SN)
 - SN -> degraded mobilities
- Promising for low EOT with low leakage, good mobilities (?)

![XTEM of gate stack](image)

Q. Lu et al., to be presented at 2002 VLSI Tech. Symp.
Achieving Low R_{sd}

- Increase source/drain dopant concentration
 Issue: Ultra-shallow junction formation

- Use elevated source/drain structure
 Issue: Process complexity

- Lower source/drain contact resistance
 Issue: New materials / process complexity

SiGe Raised Source/Drain

- Raised S/D -> low sheet resistance
 - thicker S/D contact region

- SiGe -> low specific contact resistivity ρ_c
 - smaller bandgap -> smaller Schottky barrier
 - lower resistivity

 $\rho_c \sim 10^{-8} \ \Omega\cdot\text{cm}^2$ for germanosilicides on SiGe
 Prof. Ozturk’s group at NCSU
 => meets ITRS requirement!
Selective Deposition of Ge

- Conventional LPCVD tool
 - GeH$_4$ gas, 340°C, 300mT
- Ge deposits selectively onto Si

XTEM of selectively grown Ge

XTEM of UTB MOSFET w/ raised Ge S/D

SiGe Raised S/D Process

Gate patterning
6 nm CVD oxide
(etch stop for spacer formation)

Nitride spacer formation(L_{sw}=25 nm)

Oxide removal in S/D regions by HF dip
Selective Ge LPCVD, 60 nm

20nm CVD oxide for capping layer
B⁺ implantation (6x10¹⁵/cm², 5keV)

Ge-B/Si intermixing(900°C, 7min)

“Single drain” structure w/ shallow S/D extensions

SiGe Raised S/D PMOSFET

- Good SCE
 - $N_{\text{sub}} = 10^{17} \text{ cm}^{-3}$
 - No halo doping

- Low I_{dsat}
 - S&D underlap gate; process not yet optimized

Thin-Body SOI MOSFETs
(by 2007?)

Ultra-Thin Body

- Gate
- Source
- SOI
- Drain
- T_{SOI}
- T_{Si}
- T_{BOX}

Double Gate

- Gate
- Source
- SOI
- Drain
- V_g
- T_{Si}
- T_{ox}

Common feature: A thin body, such that no conduction path is far from the gate

T.-J. King, UC Berkeley

April 17, 2002
Double-Gate “FinFET”

- Self-aligned gates straddle thin silicon fin
- Current flows parallel to wafer surface

FinFET Structures

Original:

Simplified:
- “quasi-planar”
- simple CMOS layout
FinFET with SiGe Raised S/D

- Ge can be selectively deposited on top of Si fin(s)

Plan-view SEM of sub-50 nm \(L_{\text{gate}}\) multi-fin device after selective Ge

XTEM of Si fin with selectively deposited Ge

\(I_{\text{dsat}}\) Improvement w/ Raised S/D

\[L_{\text{gate}} = 90 \text{ nm}; W_{\text{fin}} = 70 \text{ nm}; W = 2 \times H_{\text{fin}} = 100 \text{ nm}\]

Additional process steps:
- Remove SiO\(_2\) over S/D
- Selectively grow 70 nm Ge
- Implant dopants
- 750°C activation anneal*
- 400°C FGA

\[\rightarrow 28\% \text{ improvement in } I_{\text{dsat}}\]

*Ge offers low thermal processing budget for S/D formation
- useful for advanced gate-stack materials

T.-J. King, UC Berkeley
April 17, 2002
Outline

• Introduction
 – IC technology advancement

• Microelectronics Applications for SiGe
 – Poly-SiGe gate
 – SiGe raised source/drain

• SiGe MEMS Technology
 – Properties of poly-SiGe
 – Modular integration with CMOS

• Summary

Why MEMS?

• Enhance functionality/value of IC products using available microfabrication technology

Product examples:
 – low-power, wireless building blocks
 • MEMS antennas, microswitches, filters
 – cooler microprocessors
 • micropumps, valves, and channels for cooling
 – bio chips
 • microfluidics
MEMS Technology

Surface-micromachining steps

- Mechanical structures are fabricated using conventional IC fabrication techniques
- Microstructures are freed by selective removal of sacrificial layer(s)
- Si is structural material of choice
 - Excellent mechanical properties
 - Residual stress and strain gradient are issues
- High-temperature (>900°C) annealing necessary

MEMS Resonator

- Electrostatic force is applied by a comb drive to a suspended shuttle
- Motion is detected capacitively by a sense comb
Integrated Microsystems

- Modular, electronics-first approach is attractive
 - Separate development of micromechanics, microelectronics
 - Manufacture using IC and MEMS foundries
 - Minimization of chip area
- Presents technological challenges for poly-Si MEMS technology

→ Low-temperature micromachining process needed to simplify modular integration of CMOS and MEMS!

Deposition of SiGe Films

Arrhenius plot of deposition rate

- Conventional LPCVD tool
 - add GeH₄ as Ge source
- Dep. rate increases as Ge↑
- $T_{dep.}$ can be lowered as Ge↑
- $T_{transition}$ decreases as Ge↑

T.-J. King, UC Berkeley April 17, 2002
Etching of SiGe Films

Films are compatible with:

- wet-cleaning processes (x<0.6, except “SC-1” bath)
- conventional dry-etch processes (F, Cl, HBr chemistries)

T.-J. King, UC Berkeley April 17, 2002

Properties of Poly-SiGe
Residual Stress

- Undoped films deposited in polycrystalline form
- As-deposited Si\textsubscript{1-x}Ge\textsubscript{x} films have low stress!

T.-J. King, UC Berkeley April 17, 2002
Properties of Poly-SiGe

Stress Gradient

Undoped as-deposited poly-Si_{0.8}Ge_{0.2} cantilevers
(up to 1 mm long, 1 µm thick)

- Tip deflection for 1 mm beam: 15 µm
 \[\Rightarrow \text{Linear strain gradient} = 3 \times 10^{-5} \, \mu\text{m}^{-1}\]
 (reference: N+ poly-Si (ADI) after anneal -> 2.67 \times 10^{-5} \, \mu\text{m}^{-1})

T.-J. King, UC Berkeley
April 17, 2002

Properties of Poly-SiGe

Etch Selectivity

<table>
<thead>
<tr>
<th>Etch Rates in µm/min</th>
<th>HF</th>
<th>RCA, SC1</th>
<th>H_2O_2</th>
<th>Cl_2/HBr Plasma</th>
</tr>
</thead>
<tbody>
<tr>
<td>Poly-Ge</td>
<td>~0</td>
<td>3.0</td>
<td>0.4</td>
<td>0.41</td>
</tr>
<tr>
<td>Poly-Si_{0.2}Ge_{0.8}</td>
<td>~0</td>
<td>~0.75</td>
<td>~0.08</td>
<td>0.37</td>
</tr>
<tr>
<td>Poly-Si_{0.4}Ge_{0.6}</td>
<td>~0</td>
<td>0.06</td>
<td>~0</td>
<td>0.31</td>
</tr>
<tr>
<td>Poly-Si</td>
<td>~0</td>
<td>~0</td>
<td>~0</td>
<td>0.16</td>
</tr>
<tr>
<td>Annealed PSG</td>
<td>3.6</td>
<td>~0</td>
<td>~0</td>
<td>~0</td>
</tr>
</tbody>
</table>

- Ge-rich films etch rapidly in oxidizing solutions
 \[\Rightarrow \text{Poly-Ge can be a sacrificial material!}\]
Properties of Poly-SiGe
Germanium as a Sacrificial Material

Advantages:

– non-HF-based etchant
 • eliminates need for protective layer for electronics
 • does not damage Si
– high etch selectivity w.r.t. poly-Si, SiO₂, Si₃N₄

Si₀.₃₅Ge₀.₆₅-MEMS/CMOS Technology

Schematic cross-sectional view of modularly integrated devices

• Conventional CMOS process (Al metallization)
• Structural layer: ~65% Ge, 2.5 μm thick
 – deposited by LPCVD at 450°C (1μm/hr), in-situ B doped (6 Ω/□)
 – no post-dep. anneal (~10 MPa stress; ~10⁷μm strain gradient)
• Sacrificial layer: 100% Ge, 2 μm thick
 – deposited by LPCVD at 450°C (~1 μm/hr)
 – selectively removed using H₂O₂ (80°C) to release microstructures
Integrated SiGe-MEMS/CMOS

Resonator next to Amplifier
- conventional layout of integrated MEMS

Resonator on top of Amplifier
- smaller area → lower cost
- reduced interconnect parasitics → improved performance

A. E. Franke et al., Solid-State Sensor and Actuator Workshop Technical Digest, pp. 18-21, June 2000

T.-J. King, UC Berkeley

Si$_{0.35}$Ge$_{0.65}$ Resonator Response

Q = 70
Tested In Air

Q = 14,000 at 40 µTorr

T.-J. King, UC Berkeley

April 17, 2002
RF MEMS Technology

- Advantages of MEMS filters:
 - Small size
 - Low cost
 - High Q (?)
 - Low phase noise

RF Transceivers of the Future

- Single-Chip, Scaled CMOS or BiCMOS
- Minimum External Components

Wireless devices will be ubiquitous!
- E.g. sensor networks

Key goals:
- Minimum power dissipation
- Minimum cost
- Small form factor
Summary

• MOSFET performance can be improved to meet ITRS specifications by using SiGe for
 – gate electrode (thinner $T_{ox,eq}$)
 – SiGe raised S/D (lower R_{sd})

• SiGe can make MEMS more accessible for the semiconductor industry
 – Modular integration of high-performance MEMS and electronics

Acknowledgements

• Collaborators:
 – Professors: Jeffrey Bokor, Roger Howe, Chenming Hu*
 – Students: Leland Chang, Andrea Franke², Daewon Ha, John Heck¹, Nick Lindert¹, Qiang Lu, Pushkar Ranade, Yee-Chia Yeo
 – Dr. Yang-Kyu Choi, Hideki Takeuchi, Dr. Erik Anderson^*on leave at TSMC ¹now with Intel ²now with Motorola ³LBNL

• Funding:
 – SRC/Sematech Front End Processes Research Center
 – SRC Advanced Devices and Technology Program
 – MARCO Focus Center for Advanced Materials, Structures and Devices
 – DARPA MEMS & IMT Programs