Scaling Induced Performance Limitations of Metal Interconnects

Prof. Krishna Saraswat
and
Students: P. Kapur, G. Chandra, T.-Y. Chiang, S. Souri

Department of Electrical Engineering
Stanford University
Stanford, CA 94305
saraswat@stanford.edu

Funding sources: DARPA, MARCO
Outline

• Realistic metal resistivity modeling with technology constraints
 – Cu diffusion Barrier
 – Electron Scattering

• Performance assessment with realistic parameters
 – Delay
 – Repeaters
 – Power
 – Comparison of Cu with Al

• Novel communication mechanisms
 – Optical interconnects
 – 3-D technologies
 – RF wireless interconnects
Introduction: Types of Interconnects and Metrics

- Dimension based
 - Local
 - Intermediate/semiglobal
 - Global
- Function based
 - Signaling
 - Clocking
 - Power/Gnd distribution

Performance
- Delay
- Power
- Bandwidth
- Area
- Self Heating
- Data Reliability (Noise)
 - Cross talk
 - ISI: impedance mismatch

Reliability
- Electromigration

Depend on R and C!
Motivation (I): Future Problems

Aspect ratio increase (tradeoffs) =>
- Better delay and electromigration
- Worse power and cross talk

In future even with new materials
- Delay curve moves up
- Power curve moves down (total may go up)
- Cross talk curve same
 - If dielectric ratio is same
 - Current density curve flatter

Shows design window complexity!
Motivation (II): Future Problems (Delay)

All types of signal wires delays are deteriorating wrt gate delay with scaling even with new low-k materials!

Will better materials like copper and low-k dielectrics solve the interconnect problem?
Limit of Low-k Dielectrics

- Old dielectric $\text{SiO}_2 \ K = 4$
- Polymers or air-gaps $\ K = 2 - 3$
- Ultimate limit is air with $K = 1$
Cu Resistivity: Effect of Line Width Scaling

- Effect of Cu diffusion Barrier
 - Barriers have higher resistivity
 - Barriers can’t be scaled below a minimum thickness
 - Consumes larger area as dimensions decrease

- Effect of Electron Scattering
 - Reduced mobility as dimensions decrease
 - Reduced mobility as chip temperature increases

➢ Resistivity of metal wires could be much higher than bulk value
➢ Problem is worse than anticipated in the ITRS roadmap
Cu Resistivity: Theoretical Background

Barrier Effect

\[
\frac{\rho_b}{\rho_o} = \frac{1}{1 - \frac{A_b}{AR \cdot w^2}}
\]

- Important parameter: \(A_b \) to \(A_{\text{int}} \) ratio
- \(\rho_b \) increase with \(A_b \) to \(A_{\text{int}} \) ratio
- Future: ratio may increase

Electron Surface Scattering Effect

\[
\frac{\rho_s}{\rho_o} = \frac{1}{1 - \frac{3(1-p)\lambda_{\text{mfp}}}{2d} \int_1^\infty \left(\frac{1}{T^3} - \frac{1}{T^5} \right) \frac{1}{1 - pe^{-kT}} dT}
\]

- Reduced electron mobility
- Operational temperature
- Copper/barrier interface quality
- Dimensions decrease in tiers: local, semiglobal, global

\(k = \frac{d}{\lambda_{\text{mfp}}} \)
\(\lambda_{\text{mfp}} \): Bulk mean free path for electrons
\(d \): Smallest dimension of the interconnect
Methodology for Resistivity Calculations

- SPEEDIE used to simulate barrier profiles
 - Different technologies
 - Different geometries: ITRS ‘99,
 - 180 nm to 35 nm technology node
 - Local, semi-global, global
 - Two barrier thicknesses: 5 and 10 nm
 - Surface scattering effect
 - P from 0 to 1 in step of 0.25
 - Temperature: 0°C and 100°C

ALD most conformal => least barrier area => least resistivity
Cu Effective Resistivity: Effect of barrier deposition technology

With ALD least resistivity rise
With best barrier (ALD) and reasonable P = 0.5, resistivity = 3.05 μΩ-cm in 2014
Al resistivity rises slower than Cu. Cross over with Cu resistivity possible
 – no 4 sided barrier
 – smaller λ_{mfp} => smaller k

Saraswat/ TFUG 3/20/02
Effect of Barrier Deposition Technologies

Temp. = 100 °C, P=0.5, Barrier thickn. 10 nm

- Resistivity rises faster for local
- Cu exceeds Al resistivity

• 35 nm node: even with ALD resistivities=4.2 (semi-global) 5 µΩ-cm (local)
Effect of Barrier Thickness: Global Wires

• Resistivity rises much faster with 10 nm

➢ A barrierless Cu technology is desirable
• Higher temperature ⇒ lower mobility ⇒ higher resistivity
• Realistic Values at 35 nm node: P=0.5, temp=100 °C
 - local ~ 5 µΩ-cm
 - semi-global ~ 4.2 µΩ-cm
 - global ~ 3.2 µΩ-cm

➢ Low power circuits and better packaging technology needed
Summary of resistance per unit length at 35 nm node

Realistic Cu resistivity with technology constraints is much higher than the bulk value.

<table>
<thead>
<tr>
<th>Practical Constraint</th>
<th>Global Resist. (Ω/mm)</th>
<th>Semi-global Resist. (Ω/mm)</th>
<th>Local Resist. (Ω/mm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>None: ideal</td>
<td>Year 2014</td>
<td>Year 2014</td>
<td>Year 2014</td>
</tr>
<tr>
<td>ρ=1.7μΩ-cm</td>
<td>628</td>
<td>1773</td>
<td>3275</td>
</tr>
<tr>
<td>P=0.5, BT=10nm</td>
<td>1192 (190%)</td>
<td>4351 (245%)</td>
<td>9564 (292%)</td>
</tr>
<tr>
<td>P=1, BT=10nm</td>
<td>1123 (179%)</td>
<td>3942 (222%)</td>
<td>8490 (259%)</td>
</tr>
<tr>
<td>P=0.5, BT=0</td>
<td>908 (145%)</td>
<td>2668 (151%)</td>
<td>5030 (154%)</td>
</tr>
</tbody>
</table>
Cu Interconnect Delay

Global wire delay per unit length

- Global Wires
 - Current (180nm): 30 Ω/mm
 - Ideal (50 nm): 310 Ω/mm
 - Most Realistic (50 nm): 525 Ω/mm
 - Barr. Thick.=0, P=0.5: 400 Ω/mm

- Semi-global and local: much worse
Delay of Signal Wires

Three types of signal wires

- Wires whose length shrinks (local)
 - Local wire delay is also going up slowly wrt gate delay
- Wires whose length remains about the same (semiglobal)
 - Worse than local
- Wires whose length increase with scaling (Global)
 - Very bad

➢ All types of signal wires delays are deteriorating wrt gate delay with scaling even with new low-k materials and Cu
Can we solve the problem by using more repeaters?

Delay of a line without repeaters

\[\tau_L = \frac{3.56 \cdot K_{ox} \varepsilon_o \rho}{\lambda^2} L^2 \]

Delay of a line with n repeaters

\[(\tau_{L/n} + \tau_G)n = \frac{3.56 \cdot K_{ox} \varepsilon_o \rho}{\lambda^2} \left(\frac{L^2}{n} \right) + n\tau_G \]
Signaling wire delay modeling with repeaters

<table>
<thead>
<tr>
<th>Technology Node (µm)</th>
<th>Wire Delay (in number of clock cycles)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.18</td>
<td>Non-repeated</td>
</tr>
<tr>
<td>0.15</td>
<td>Optimally Repeated</td>
</tr>
<tr>
<td>0.12</td>
<td>Repeated: DP = 25%</td>
</tr>
</tbody>
</table>

ITRS dictated electrical wire aspect ratio

Global Communication copper wires

Practical Constraints of Cu \(\rho \) (for ALD &IPVD curves)
- Barrier Thickness: 10 nm
- Temperature=100°C
- Interface quality (P)=0.5

- ALD Barrier likely to be used in the future
 - 66 ps/mm at 50 nm;
 - 93 ps/mm at 35 nm node
 - 1/28 times C at 35 nm node
 - 30% more than with ideal Cu \(\rho \) at 50nm node

Also have Power and Area penalties
- Pushing bottleneck to power

- Even with repeaters, 7.5X Clock at 35nm node
 - 8X increase compared to 180nm node
 - 3X from clock speed
 - 1.85X from delay per mm
 - 1.45X from length increase

- Worst case delay
 - 11 times clock period at 35 nm
ITRS wire dimensions: justified based on barely enough metal levels to fit the wires
Separation of memory and logic area because different wire length distributions
Rent’s rule based distribution for logic area

A big fraction of the chip area would be occupied by repeaters
Additional power will be consumed by repeaters
Chip Power: Breakdown

- Dynamic Power: \(CV^2f \)
- Leakage power: devices
- Short circuit power during switching
- Analog components (sense amps etc.): static power

Dynamic Power

clocking
- Latches
- Clocking Interconnects

Signaling
- Devices
- Signaling Interconnects
- Logic
- Memory

I/O
- Buffers
- Off-chip load

Interconnect power
- Due to \(C_{int} \): dissipated in devices
- Due to \(R_{int} \): Joule heating (makes things worse)
Global Signaling Wire: Repeater Power Penalty

- Exorbitant power signaling wires at future nodes (50nm)
- Global Wires = 60 Watts (p=0.55)
- Repeaters = 60 Watts (p=0.55)
- 120W for just global signaling wires

Delay optimal repeaters ~ double power consumption of the wire
- Global wire power same as above
Global Signaling Wire: Repeater Power minimization With Delay Tradeoff

- Tolerable delay penalty depends on architecture
- Still 20W of power dissipation due to repeaters at 50nm node
- With about 20% more delay power dissipation by global wires with repeaters on them is now $\sim 60+20=80W$ at 50nm node
Electrical Wire latency not a problem: true or false???

• Can stack repeaters
 • Even with repeaters delay rises
 - in absolute terms (2.7X 180 nm to 35 nm node)
 - compared to clock period (8X 180 nm to 35 nm node)
 • Power and area penalties
• Can pipeline deeper
 • More power penalty (especially with worsening delays with respect to clock period)
• Can exploit locality in communication: Techniques yet to be developed

Electrical wire delay is a problem because every solution pushes the bottleneck to the power problem and power is becoming EXTREMELY CRITICAL
New techniques to minimize the communication distance/time will be needed to continue the evolution in integrated electronics

- Minimize wire length
 - Better circuit design
 - 3-D ICs
- Novel communication mechanisms
 - Optical interconnects
 - RF wireless interconnects
Can Optical Interconnects help?

- Signal wires:
 - Reduce delay
 - Increase bandwidth

- Clock distribution
 - Reduce jitter
 - Reduce skew
 - Reduce clock distribution power (50-60% of total power on chip)
Optical Vs. Electrical Wires: Signaling Delay

Optical Communication System
\[t_{\text{opt}} = t_{\text{trans}} + t_{\text{wg}} + t_{\text{rec}} \]

Electrical Communication System

Electrical Interconnect with repeaters

Electrical components
Optical components
Optical Vs. Electrical Wires: Delay

- **IOP**: Incident Optical Power at the receiver
- **Practical Cu ρ**: ALD Barrier, Barrier Thickness=10nm, temperature=100 °C, Surface Scattering parameter (P)=0.5

50nm Node

- **Critical length**: above which optical System is faster than even the electrical (Cu) repeated wires
- **Optical Interconnects are faster than repeated wires beyond a length well within chip size**
- **However for Signaling both delay and power are important**
- **1.8 mW is approximately power dissipated by a repeated chip edge long wire**
Power Dissipation Comparisons Between Metal, Optical and Wireless Clock Distribution

Lower Detector Capacitance and higher IOP for low Receiver power Dissipation

Can we solve the problem by using 3-D Integration?
3D ICs: Motivation

- Reduce Chip footprint
- Interconnect length and therefore R, L, C can be minimized
- Integration of heterogeneous technologies possible, e.g., memory & logic, optical I/O, etc.

![Diagram showing 2D vs 3D ICs with reduced area and wire length](image)
Delay of Scaled 3D ICs

Simulations assumed:
- State-of-the-art chip at a technology node with data from ITRS
- Entire area dedicated to logic
- Delay is due to the longest wire on the chip

RF-Interconnect System Concept and Payoff

- Low loss, dispersion-free, ultra-high data rate (100Gbps/channel & 20Tbps/chip)
- Multi-I/Os per channel, simultaneous communications via shared MTL or CPW using FDMA/CDMA multiple access algorithms
- Reconfigurable network for on-line system-level rewiring (Architecture reconfigurable on-the-fly)
- Coherent chip-module combined interconnect scheme, compatible with mainstream ULSI, MCM or surface-mount PCB

Source: Frank Chang, UCLA
Conclusions

• Barrier and surface scattering effects vital in dictating Cu effective resistivity

• Cu effective resistivity will rise to prohibitively high values even with best barrier technology: Atomic Layer Deposition (ALD)

• Performance Parameters (ALD barrier 10 nm T=100 °C, P=0.5, global Interconnects)
 – Resistance per unit length: 1200 Ω/mm (35 nm node); 30 Ω/mm (180 nm node)
 – Delay even with repeaters: 6 times clock period (35 nm node); underestimate to about 4 times with ideal ρ
 – Number of repeaters per line: 70-80 (ALD & IPVD) vs. 55 (ideal)
 – Repeaters increase area and power

• Future Recommendations and identification of some key technological concentration
 – ITRS may need to be revised in light of above results
 – Need for barrierless technology, new ultra cooling mechanism (lower wire temperature)
 and interface technology yielding P values close to 1
 – Limitations of Copper Technology: May need alternate technologies such as optical interconnects, 3D or wireless