

Methods to Enable Plasma Etching of Transition Metals with Atomic Scale Precision

N. Marchack, B. Walusiak, K. Hernandez[†], J.M. Papalia, S.U. Engelmann and E. A. Joseph

IBM Research, Yorktown Heights, NY [†]University of Texas at Dallas, Richardson, TX

NCCAVS Plasma Applications Group Workshop on Atomic Layer Etching August 20th, 2018 Milpitas, California, USA

Cyclic Approaches for Transition Metal Patterning

Cl₂/H₂ Approach to TaN and TiN Synergy Study and Deviations from Ideal Case Knobs for Profile and CD Control

Effect of Carrier Gas – Ar vs. He

Process Uniformity
Surface Composition
Redeposition effects on Profile

Strategy of IBM's Computing Innovation

3

Continued scaling of MOSFET

Δ

Novel geometries, materials for 5nm node and beyond

Methods for Atomic Layer Precision Control

Controlling selectivity by ion energy

Oehrlein et al. ECS J. Solid State Sci. Technol. 2015; 4 (6) N5041-N5053

Controlling selectivity by surface chemistry

- Tailoring surface chemistry is an essential method to reach atomic layer control
- Ion Energy control is another critical way to enable atomic scale precision

→ Combination of Chemistry and Energy threshold chosen specifically to enable reactant activation and removal of one material selective to all others

Engelmann, et al., JVSTB 35, 051803-1 (2017)

Control of surface chemistry by Cyclic etching

"ALE" Approaches - Overview

7

	ALE (reverse ALD)	Flux Control – Quasi ALE	
Method	Cyclic process with self-limited adsorption and etch steps; complementary to established ALD processes	Continuous plasma during all cyclic processing steps, depositing plasma layer and reacting layer energetically at top surface	
Advantage	High precision, true self limitation, uniformity	Wide process temperature range, faster process time, synergy with PE-ALD learning	
Disadvantage	Throughput, physical wafer movement (some systems), process temperature limitations	Plasma damage, true self- limitation deposit not known at this point, design of precursor gas needs understanding of ALE plasma decomposition	
Examples	Si ALE by Cl_2 and Ar (neutral beam or ions), Cyclic TMA + HF \rightarrow Conversion Etch	Cyclic etch of oxide by fluorocarbon/Ar plasma discharges	
Source: S. U. Engelmann et al., ECS J. Solid State Sci. Technol. 2015 4(6): N5054-N5060			

ALE Approaches for Metal (Composite) Films

(Lee, Huffman & George, Chem. Materials, 2016)

(B. Turkot, Sematech ALE Workshop, April 21, 2014).

8

Cyclic approach recognized as necessary for delineation of complex reactions, esp. in a plasma environment!

© 2016 IBM Corporation

<u>TiN – Comparison of CW Process to Cyclic Etch (No H₂)</u>

Residue apparent in trench bottoms for CW process for both partial and full etch conditions.

Cyclic Etch Process shows ER (per cycle) well above "ALE" standards.

TaN – Comparison of CW Process to Cyclic Etch (No H₂)

Veiling of OPL (due to redep) is less apparent for TaN etched using the cyclic process.
 Sidewall angle on deeper etch is more vertical (less redep).

Synergy Assessment – Application to TiN and TaN

Material	Bond	∆ <i>Hf₂₉₈</i> (kJ/mol)	Surface Binding Energy (eV)
TiN	Ti-N	464	4.89 (Ti), 4.94 (TiN)**
	Ti-Cl	494	
	Ti-O	662	
TaN	Ta-N	611	8.1 (Ta)
	Ta-Cl	544	
	Ta-O	805	

(Ranjan et al., JVST A, 2001)

ALE synergy appears correlated to surface binding energy – potentially favoring TaN over TiN for more "ideal" ALE process.

■ Reaction with Cl₂ for TiN expected to be more favorable $(\Delta Hf_{Ti-Cl} > \Delta Hf_{Ti-N})$ than TaN.

© 2016 IBM Corporation

$$S_{TaN} \sim \frac{6 - (0.84 + 0.41)}{6} \le 79\%$$

TiN does not show saturation behavior even for Cl₂ pulse time of 6s.

Synergy calculations approximate due to "quasi-ALE" nature, however numbers are in line w/ literature (albeit at ERs ~ one order of magnitude larger...)
© 2016 IBM Corporation

PE-ALE Process Space

PE-ALE Process Space

<u>TiN Cyclic Etch – Effect of H₂ Addition</u>

© 2016 IBM Corporation

🍪 IBM

TiN Cyclic Etch – Effect of H₂ Addition

Mask loss mainly due to H₂ addition

 \Box ER/cycle is lower with H₂ addition

OES comparison indicates that H₂ addition is affecting reaction of Cl₂

TaN Cyclic Etch – Effect of H₂ Addition

Mask loss mainly due to H₂ addition

Veiling of OPL becomes more pronounced, due to increase in sputtering component.

Effect of Residence/Purge Times – Effect on TiN Profile

with TiN, lateral component also increased. 19

Without H₂ 77 7 108 Long purge

Effect of Residence/Purge Times – Effect on TaN Profile

Long Purge

86

Deconvolution of Purge Time Effect

TiN Cyclic Etch w/ H ₂ Addition					
Sample	CD- Pre (nm)	CD- Post (nm)	ER * (nm / cycle)	# of Cycles	OPL Left
Both Purges Short (A)	103	85	~5	13	57
Both Purges Long (B)	97	73	~8	7	89
Long H ₂ Purge Only (C)	98	84	2.5	8	102
Long Cl ₂ Purge Only (D)	97	65	>10	10	81

Only increasing duration of H₂ purge results in etch rate reduction, if Cl₂ is held constant.

ER/cycle Control Using Cl₂ Exposure and Purge Times

Etched amount per cycle can be reduced to ~1nm/cycle by controlling Cl₂ pulse time and "purge" time before H₂ exposure.

Plasma Pulsing to Further Reduce Etch Rate Per Cycle

Use of synchronous plasma pulsing @ 60% DC results in a decrease of 50% in ER.

Need to assess effect for extended step times!

© 2016 IBM Corporation

Overview

Effect of He vs. Ar as the background gas

He was selected as a carrier gas to reduce the sputtering component

Preliminary OES results suggest Cl may be vacated more effectively by Ar than He.

Individual Step Assessment – Ar background

Similar to He background, TiN etches spontaneously in Cl₂ under this plasma condition.
 No sputtering observed for either material.

TiN Uniformity as a function of Purge Times w/ Ar Background

Post Cl ₂ purge (s)	Post H ₂ purge (s)	ER (nm/cyc)	StDev (%)
15	2	2.2	33.5
120	120	1.5	27.5
15	120	1.7	28.1
120	2	1.4	32.6

- Opposite effect seen compared to He background – the ER decreases w/ increasing Cl₂ purge.
- Suggests Ar could contribute to purging Cl₂ more efficiently.

TaN Uniformity as a function of Purge Times w/ Ar Background

Post Cl₂ Post H₂ ER **StDev** purge (s) purge (s) (nm/cyc) (%) 15 1.2 11.2 2 120 120 0.7 6.4 15 120 1.1 9.9 120 2 1.1 11.9

(nm/cycle)

Improved across-wafer uniformity for cyclic TaN etch.

Focus on TaN in remainder of study.

© 2016 IBM Corporation

C) IBN

Surface Composition of Blanket TaN

Pre-Etch

282

528

682

526

280

Cyclic, Long H₂ Purge (2,15,20,120) – 5 cycles
 Cyclic, Long Cl₂ Purge (2,120,20,2) – 5 cycles

Element	Pre-Etch	Long Cl Purge	Long H ₂ Purge
Та	31	32	32
С	13	11	11
Ν	3	3	3
0	53	47	46
Cl	0	1	2
F	0	6	6

No significant differences seen in surface composition as a function of purge time.

Etched films show reduced oxygen content corresponding to increase in relative intensity of metallic Ta.

Detailed OES Analysis of Cyclic Process

As Cl₂ is introduced to the discharge relative intensity of background Ar gas drops (2).

As Cl₂ is evacuated, its peaks become diminished (3), and subsequently intensity of Ar lines increases again (4).

TBA

30

Detailed OES Analysis of Cyclic Process

dominates again (8).

31

300

250

Wavelength (nm)

400

350

© 2016 IBM Corporation

500

450

TR

Effect of Cl₂ step length on patterned profiles

- For patterned samples, increased difficulty seen in breakthrough of native TaON layer, added brief CF₄ based step.
- Subsequently, on a coupon (~1/4 of 200mm wafer), large discrepancy seen in profiles with increased Cl₂ step length.
- However, blanket ER data shows no dependence on Cl₂ step length.

Carrier Wafer Effect

For the case of Si carrier wafer, OPL retention is worse in case of He background, more lateral etch of TaN observed.

□ For SiO_x carrier wafer, OPL retention is worse than Si carrier and profiles become slanted. 33

Carrier Wafer Effect Ar Background Full Time Plot 5000 Ar, Si Carrier **Carrier Wafer** 4000 OPL Magnitu Magnitu 100 TaN S Ta 331nm 12265 333 SiOx Time, [sec] as a Full Time Plot 5000 SiOx Carrier Wafer function of Ar, SiO₂ Carrier 4000 time Magnitude, L 1000 000 200 Time, [sec]

For the case of Si carrier wafer, OPL retention is worse in case of He background, more lateral etch of TaN observed.

□ For SiO_x carrier wafer, OPL retention is worse than Si carrier and profiles become slanted. 34 © 2016 IBM Corporation

Carrier Wafer Effect Ar Background Full Time Plot ×10⁴ **Carrier Wafer** Ar, Si Carrier Magnitude. [a.u.] OPL TaN S Si 251nm SiOx 2523 14790 Time, [sec] as a SiOx Carrier Wafer function of Full Time Plot time Ar, SiO₂ Carrier Magnitude, [a.u.] 2223 2523 2523 2523 313.1 550 2222 262 2332 Time, [sec]

For the case of Si carrier wafer, OPL retention is worse in case of He background, more lateral etch of TaN observed.

For SiO_x carrier wafer, OPL retention is worse than Si carrier and profiles become slanted.

Surface Composition Dependence on Carrier Wafer

Pronounced Ta-O bonding seen after 3 cycles of etching using SiOx carrier.
 Survey scans confirm presence of Si on surface for Si carrier (observed in OES).
 Ta-O formation in line with thermodynamic data.

Utilizing Redeposition Effects

🍪 IBM

□ Fencing effect and OPL loss was caused by exposure of OPL mask to cyclic process.

Used to create "pitch split" effect from single lithographic feature.

© 2016 IBM Corporation

🍪 IBM

Utilizing Redeposition Effects

Ar background BT + 10 cycles

Ar background BT + 20 cycles

Experimental result reproduced after "pre-exposure" of OPL mask to cyclic etch process.

🍪 IBM

Utilizing Redeposition Effects

Ar background BT + 10 cycles

He background BT + 13 cycles (Thick SiOx carrier)

Experimental result reproduced after "pre-exposure" of OPL mask to cyclic etch process.

Later found that thickness of SiOx on carrier wafer also played role.

OFlux-controlled Quasi-ALE process using Cl₂ and H₂ demonstrated on TiN and TaN using OPL masks.

- Cyclic etching approach offers several benefits less sputtering/redeposition, additional knobs for control of profile/CD.
- Key differences in He vs. Ar background gas that need to considered (e.g. when operating in spontaneous etch regime).
- Loading effects/mask interaction also play important role when trying to apply quasi-ALE to patterned features!

Acknowledgments

- All results shown have been produced in the Microelectronics Research Laboratory (MRL) at the TJ Watson Research Center, Yorktown Heights.
- Authors would like to thank TJ Watson management for their support of our efforts.
- □ Thanks to Robert Bruce and Hongwen Yan for fruitful discussions.

- Synergy is a measure of deviation from ideal bena

Linked to surface energy of materials.

© 2016 IBM Corporation

Ion energy (eV)

(Kanarik et al., JVST A, 2017)

Role of Surface Oxidation

- Breakthrough delay observed for TiN and TaN, both CW and cyclic etch processes.
- Oxidation of surface attributed to the OPL mask open (N₂/O₂)

Surface Chemistry Effects

 \Box Cyclic Etch process (w/ H₂) show best retention of Ti:N ratio compared to CW.

Surface Chemistry Effects

 \Box Cyclic Etch process (w/ H₂) show best retention of Ti:N ratio compared to CW.

Surface Chemistry Effects

 \Box Cyclic Etch process (w/ H₂) show best retention of Ti:N ratio compared to CW.

□ For TaN, cyclic etch shows significantly less oxidation post O₂ strip.

© 2016 IBM Corporation

TRA