Mechanisms for Thermal Atomic Layer Etching

Steven M. George Dept. of Chemistry, University of Colorado Boulder, Colorado 80309 Steven.George@Colorado.edu

Advanced Semiconductor Fabrication Requires Atomic Layer Processing

Thermal ALE Using Sequential, Self-Limiting Surface Reactions

C.T. Carver et al., ECS J. Solid State Sci. Technology 4, N5005 (2015). 3

Requirements for Thermal ALE

Use **spontaneous**, sequential, **self-limiting** thermal reactions that **remove** with atomic control.

Spontaneous requires favorable thermochemistry.Self-limiting requires saturation of surface reaction.Removal requires volatility of reaction product.

Mechanisms for Thermal ALE of Metal Oxides, Metal Nitrides & Elemental Metals

- 1. Fluorination & Ligand-Exchange: Al₂O₃ ALE Using Al(CH₃)₃ & HF
- 2. Oxidation & Fluorination to Volatile Fluoride: TiN ALE Using O₃ & HF
- 3. Oxidation, Conversion & Fluorination to Volatile Fluoride: WALE Using O₃, BCl₃ & HF

1. Fluorination & Ligand-Exchange: Al₂O₃ ALE Using Al(CH₃)₃ & HF

 $AI(CH_3)_3$ (TMA) HF-Pyridine

QCM Studies in Hot Wall, Viscous Flow Reactor

J.W. Elam et al., *Rev. Sci. Instrum.* **73**, 2981 (2002).

Al₂O₃ ALE Using Al(CH₃)₃ and HF

100 ALE Cycles Mass change per cycle = -15.9ng/cm² Etch rate = 0.51

Å/cycle

Y. Lee, J.M. DuMont & S.M. George, *Chem. Mater.* 28, 2994 (2016). 8

Mass Loss During Al(CH₃)₃ and HF Exposures for 3 Cycles of Al₂O₃ ALE

Constant mass changes with each reactant exposure

9

Y. Lee, J.M. DuMont & S.M. George, Chem. Mater. 28, 2994 (2016).

Al₂O₃ ALE via Fluorination & Ligand Exchange

Ligand-Exchange Involves (1) Transfer of Fluorine from Metal Fluoride to Metal Precursor and (2) Transfer of Ligand from Metal Precursor to Metal Fluoride

FTIR Spectroscopy Studies of ALE Surface Species & Etched Material

FTIR Spectroscopy Measurement of Al₂O₃ Etching vs ALE Cycles

Y. Lee, J.M. DuMont & S.M. George, Chem. Mater. 28, 2994 (2016).

Difference Spectra During TMA & HF Exposures

Y. Lee, J.M. DuMont & S.M. George, *Chem. Mater.* 28, 2994 (2016). 14

Selective ALE for Different Materials

Different materials represented by various colors*

Goal to etch just one material in a background of other materials

Selectivity determined by stability & volatility of reaction products

*Adapted from C.T. Carver et al., ECS J. Solid State Sci. Technol. **4**, N5005 (2015).

Selectivity During ALE

Requirements for Metal Precursor:

- 1. Accept fluorine from metal fluoride
- 2. Donate ligand to metal in metal fluoride
- 3. Metal reaction product is stable & volatile

Strategy for Selectivity:

Use metal precursors with ligands that yield stable & volatile reaction products with target metals

Selective ALE Using Al(CH₃)₃

Y. Lee, C. Huffman & S.M. George, *Chem. Mater.* 28, 7657 (2016).

Selective ALE Using Sn(acac)₂

Selective etching of Al_2O_3 , HfO_2 & ZrO_2 .

Al, Hf & Zr form stable & volatile acac complexes.

Y. Lee, C. Huffman & S.M. George, *Chem. Mater.* **28**, 7657 (2016).

Thermal ALE Using Fluorination & Ligand-Exchange

Overall Reactions Using Sn(acac)₂ & HF:

Metal Oxide

 $HfO_2 + 4 Sn(acac)_2 + 4 HF \rightarrow Hf(acac)_4 + 4 SnF(acac) + 2 H_2O$

Metal Arsenide

GaAs + 3 Sn(acac)₂ + 3 HF \rightarrow Ga(acac)₃ + 3 SnF(acac) + AsH₃

Metal Nitride

 $GaN + 3 Sn(acac)_2 + 3HF \rightarrow Ga(acac)_3 + 3 SnF(acac) + NH_3$

Metal Phosphide

InP+ 3 Sn(acac)₂ + 3HF \rightarrow In(acac)₃ + 3 SnF(acac) + PH₃

Metal Selenide

PbSe+ 2 Sn(acac)₂ + 2 HF \rightarrow Pb(acac)₂ + 2 SnF(acac) + H₂Se

2. Oxidation & Fluorination to Volatile Fluoride: TiN ALE Using O₃ & HF

Ozone

HF-Pyridine

TiN not Etched by Fluorination & Ligand-Exchange Reactions

TiN fluorinated to TiF_3 . Ti in 3+ oxidation state.

Problem: Ti³⁺ does not have stable, volatile products during ligand-exchange.

 \rightarrow Ti⁴⁺ has stable, volatile products.

New Strategy: Oxidize TiN to TiO_2 with Ti in 4+ oxidation state. Then can spontaneously etch TiO_2 with TiF_4 as reaction product.

Reaction Mechanism for TiN ALE Using O₃ & HF

Oxidation of Ti³⁺ to Ti⁴⁺

Reaction Mechanism for TiN ALE Using O₃ & HF

Spontaneous Etching of TiO₂ by HF Exposures at 200–300°C

Y. Lee & S.M. George, *Chem. Mater.* **29**, 8202 (2017).

1s HF exposure: -17 ng/cm^2

 -25 ng/cm^2

 -32 ng/cm^2

TiN Film Thickness vs. Number of ALE Cycles Using O₃ & HF

Linear Etching Etch Rate: 0.19-0.20 Å/cycle

Y. Lee & S.M. George, Chem. Mater. 29, 8202 (2017).

Self-Limiting Behavior for TiN ALE

Y. Lee & S.M. George, *Chem. Mater.* **29**, 8202 (2017).

Temperature Dependence of Etch Rate for TiN ALE

Y. Lee & S.M. George, Chem. Mater. 29, 8202 (2017).

Selectivity of TiN ALE Using O₃ & HF

Selective Etching of TiN

Y. Lee & S.M. George, Chem. Mater. 29, 8202 (2017).

Thermal ALE Using Oxidation & Fluorination to Volatile Fluoride

Overall Reactions Using O₃ & SF₄:

$\begin{array}{c} \textbf{Metal Nitride} \\ \textbf{TiN}+3 \text{ O}_3 + \text{SF}_4 \rightarrow \textbf{TiF}_4 + \textbf{NO} + 3 \text{ O}_2 + \text{SO}_2 \end{array}$

$\begin{array}{l} \textbf{Metal Sulfide} \\ \text{WS}_2 + 7 \text{ O}_3 + 3/2 \text{ SF}_4 \rightarrow \text{WF}_6 + 7/2 \text{ SO}_2 + 7 \text{ O}_2 \end{array}$

 $\begin{array}{l} \mbox{Metal Selenide} \\ \mbox{MoSe}_2 + 9 \ \mbox{O}_3 + 3/2 \ \mbox{SF}_4 \rightarrow \mbox{MoF}_6 + 2 \ \mbox{SeO}_3 + 9 \ \mbox{O}_2 + 3/2 \ \mbox{SO}_2 \end{array}$

$\begin{array}{l} \mbox{Metal Carbide} \\ \mbox{NbC} + 7/2 \ \mbox{O}_3 + 5/4 \ \mbox{SF}_4 \rightarrow \mbox{NbF}_5 + \mbox{CO} + 7/2 \ \mbox{O}_2 + 5/4 \ \mbox{SO}_2 \\ \hline \mbox{Elemental Metal} \end{array}$

Ta + 5/2 O₃ + 5/4 SF₄ \rightarrow TaF₅ + 5/2 O₂ + 5/4 SO₂

3. Oxidation, Conversion & Fluorination to Volatile Fluoride: W ALE Using O₃, BCl₃ & HF

Metal ALE Difficult Using Fluorination & Ligand-Exchange Reactions

Problems: (1) Many metals have volatile fluorides;(2) Fluorination too exothermal and yields metalfluoride layer too thick for ALE; (3) Stable & volatilereaction products difficult during ligand exchange.

Alternatives: New thermal ALE mechanisms based on "Oxidation-Conversion-Fluorination".

W Thermal ALE Using "Oxidation-Conversion-Fluorination" Mechanism

Ellipsometer Can Monitor Both WO₃ and W Film Thicknesses

B₂O₃ Spontaneously Etched With HF

HF exposures: 100 mTorr for 1 s

 B_2O_3 films spontaneously etched at ~2 Å per HF exposure

N.R. Johnson & S.M. George, ACS Appl. Mater. Interfaces 9, 34435 (2017). 34

WO₃ ALE with BCl₃ & HF at 207°C

WALE with O₃, BCl₃ and HF at 207°C

Linear WALE

Etch rate of 2.56 Å/cycle is slightly less than one unit cell length for body-centered cubic W of 3.19 Å

Self-Limiting BCl₃ & HF Reactions

Self-limiting exposures are 500 mTorr s for $BCl_3 \& 2800$ mTorr s for HF. Self-limiting etch rate is 2.45 Å/cycle.

N.R. Johnson & S.M. George, ACS Appl. Mater. Interfaces 9, 34435 (2017). 37

Self-Limiting O₃ Reaction

WO₃ & W Thicknesses During W ALE Using O₃, BCl₃ & HF

WO₃ thickness oscillates with sequential O₃ oxidation & BCl₃/HF etch reactions

W thickness reduced linearly with number of O_3 oxidation & BCl₃/HF etch reactions. Etch rate = 2.44 Å/cycle

Removal of WO₃ Thickness on W after W ALE

WO₃ thickness can be reduced after W ALE using sequential BCl₃ & HF exposures

W thickness remains nearly constant during sequential BCl₃ & HF exposures

Thermal ALE Using Oxidation, Conversion & Fluorination to Volatile Fluoride

Oxide Conversion Reactions Using BCI₃:

Iron Oxide $Fe_2O_3 + 2 BCI_3(g) \rightarrow B_2O_3 + 2 FeCI_3(g)$ Germanium Oxide

 GeO_2 + 4/3 $\text{BCI}_3(g) \rightarrow 2/3 \text{ B}_2\text{O}_3$ + $\text{GeCI}_4(g)$

 $\begin{array}{l} \textbf{Molybdenum Oxide} \\ \textbf{MoO}_3 + 2/3 \; \textbf{BCI}_3(g) \rightarrow 1/3 \; \textbf{B}_2\textbf{O}_3 + \textbf{MoO}_2\textbf{CI}_2(g) \end{array}$

Vanadium Oxide $VO_2 + 4/3 BCI_3(g) \rightarrow 2/3 B_2O_3 + VCI_4(g)$ Gallium Oxide

 $Ga_2O_3 + 2 BCI_3(g) \rightarrow B_2O_3 + 2 GaCI_3(g)$

Surface Chemistry for Thermal ALE of Metal Oxides, Metal Nitrides & Elemental Metals

1. Al_2O_3 ALE with $Al(CH_3)_3$ & HF as reactants. Fluorination & ligand-exchange mechanism.

2. TiN ALE with O_3 & HF as reactants. Mechanism based on oxidation & fluorination to volatile fluoride.

3. W ALE with O₃, BCl₃ & HF as reactants.
Mechanism based on oxidation, coversion & fluorination to volatile fluoride.

Acknowledgements

Nick Johnson–Funded by SRC through the Nanomanufacturing Materials and Processes Thrust (GRC Task 2659.001).

Younghee Lee –Funded by SRC through Member-Specific Research project from Intel (MSR-Intel Task 2643.001).

