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Mechanisms for Thermal Atomic 
Layer Etching



Advanced Semiconductor Fabrication 
Requires Atomic Layer Processing 
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C.T. Carver et al., ECS J. Solid State Sci. Technology 4, N5005 (2015).

Thermal ALE Using Sequential, 
Self-Limiting Surface Reactions
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Requirements for Thermal ALE

Use spontaneous, sequential, self-limiting thermal 
reactions that remove with atomic control.

Spontaneous requires favorable thermochemistry.
Self-limiting requires saturation of surface reaction.

Removal requires volatility of reaction product. 
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Mechanisms for Thermal ALE of Metal 
Oxides, Metal Nitrides & Elemental Metals

1. Fluorination & Ligand-Exchange:  Al2O3 ALE 
Using Al(CH3)3 & HF

2.  Oxidation & Fluorination to Volatile Fluoride: 
TiN ALE Using O3 & HF

3. Oxidation, Conversion & Fluorination to Volatile 
Fluoride:  W ALE Using O3, BCl3 & HF
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1. Fluorination & Ligand-Exchange:  
Al2O3 ALE Using Al(CH3)3 & HF

Al(CH3)3 (TMA)
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QCM Studies in Hot Wall, Viscous 
Flow Reactor
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J.W. Elam et al., Rev. Sci. Instrum. 73, 2981 (2002). 7



100 ALE Cycles
Mass change per 

cycle = -15.9 
ng/cm2

Etch rate = 0.51 
Å/cycle

Al2O3 ALE Using Al(CH3)3 and HF

Y. Lee, J.M. DuMont & S.M. George, Chem. Mater. 28, 2994 (2016). 8



Mass Loss During Al(CH3)3 and HF 
Exposures for 3 Cycles of Al2O3 ALE

Constant mass 
changes with each 
reactant exposure

Y. Lee, J.M. DuMont & S.M. George, Chem. Mater. 28, 2994 (2016). 9



Al2O3 ALE via Fluorination & 
Ligand Exchange

10



Ligand-Exchange Involves (1) Transfer of 
Fluorine from Metal Fluoride to Metal 

Precursor and (2) Transfer of Ligand from 
Metal Precursor to Metal Fluoride 
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FTIR Spectroscopy Studies of ALE 
Surface Species & Etched Material
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FTIR Spectroscopy Measurement of 
Al2O3 Etching vs ALE Cycles

Al2O3 ALE with TMA 
& HF

Observe loss in 
absorbance during ALE

Y. Lee, J.M. DuMont & S.M. George, Chem. Mater. 28, 2994 (2016). 13



Difference Spectra During TMA & HF 
Exposures

TMA removes 
absorbance for Al-F 

stretch in AlF3

HF removes 
absorbance for Al-O 
stretch in Al2O3 & 

produces Al-F stretch 
in AlF3

Y. Lee, J.M. DuMont & S.M. George, Chem. Mater. 28, 2994 (2016). 14



Selective ALE for Different Materials

Different materials 
represented by various 

colors*

Goal to etch just one 
material in a background 

of other materials

Selectivity determined by 
stability & volatility of 

reaction products

*Adapted from C.T. Carver et al., ECS J. Solid State 
Sci. Technol. 4, N5005 (2015). 15



Selectivity During ALE

Requirements for Metal Precursor:
1.  Accept fluorine from metal fluoride

2.   Donate ligand to metal in metal fluoride
3. Metal reaction product is stable & volatile

Strategy for Selectivity:
Use metal precursors with ligands that yield stable & 

volatile reaction products with target metals 
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Selective ALE Using Al(CH3)3

Selective etching 
of Al2O3 & HfO2.

Al & Hf form 
stable & volatile 
complexes with 
methyl groups.

Y. Lee, C. Huffman & S.M. George, Chem. Mater. 28, 7657 (2016). 17



Selective ALE Using Sn(acac)2

Selective etching 
of Al2O3, HfO2 & 

ZrO2.

Al, Hf & Zr form 
stable & volatile 
acac complexes.

Y. Lee, C. Huffman & S.M. George, Chem. Mater. 28, 7657 (2016). 18



Thermal ALE Using Fluorination & 
Ligand-Exchange

Overall Reactions Using Sn(acac)2 & HF:
Metal Oxide

HfO2 + 4 Sn(acac)2 + 4 HF  Hf(acac)4 + 4 SnF(acac) + 2 H2O

Metal Arsenide
GaAs + 3 Sn(acac)2 + 3 HF  Ga(acac)3 + 3 SnF(acac) + AsH3

Metal Nitride
GaN + 3 Sn(acac)2 + 3HF  Ga(acac)3 + 3 SnF(acac) + NH3

Metal Phosphide
InP+ 3 Sn(acac)2 + 3HF  In(acac)3 + 3 SnF(acac) + PH3

Metal Selenide
PbSe+ 2 Sn(acac)2 + 2 HF  Pb(acac)2 + 2 SnF(acac) + H2Se
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2. Oxidation & Fluorination to Volatile 
Fluoride: TiN ALE Using O3 & HF

Ozone
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TiN not Etched by Fluorination & 
Ligand-Exchange Reactions

TiN fluorinated to TiF3.  Ti in 3+ oxidation state.

Problem:  Ti3+ does not have stable, volatile products 
during ligand-exchange.

 Ti4+ has stable, volatile products.

New Strategy:  Oxidize TiN to TiO2 with Ti in 4+ 
oxidation state.  Then can spontaneously etch TiO2 with 

TiF4 as reaction product.
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Reaction Mechanism for TiN ALE 
Using O3 & HF
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Reaction Mechanism for TiN ALE 
Using O3 & HF
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10 HF exposures
on ALD TiO2

300°C

250°C

200°C

−25 ng/cm2

−17 ng/cm2

−32 ng/cm2

TiO2(s) + 4HF(g) → TiF4(g) + 2H2O(g)

Mass Changes per 
1s HF exposure:

Spontaneous Etching of TiO2
by HF Exposures at 200−300°C

Y. Lee & S.M. George, Chem. Mater. 29, 8202 (2017). 24



Linear Etching
Etch Rate:

0.19-0.20 Å/cycle

TiN Film Thickness vs. Number of 
ALE Cycles Using O3 & HF

25Y. Lee & S.M. George, Chem. Mater. 29, 8202 (2017).



Self-Limiting Behavior for TiN ALE

Self-limiting O3 reaction:
TiN + 3O3 → TiO2 + NO + 3O2

Self-limiting HF reaction:
TiO2 + 4HF → TiF4 + 2H2O

26Y. Lee & S.M. George, Chem. Mater. 29, 8202 (2017).



Temperature Dependence of Etch Rate 
for TiN ALE

Etch rate for TiN
ALE : 0.2 Å/cycle 

at ≥ 250°C

Y. Lee & S.M. George, Chem. Mater. 29, 8202 (2017). 27



Selective Etching 
of TiN

Selectivity of TiN ALE Using O3 & HF

28Y. Lee & S.M. George, Chem. Mater. 29, 8202 (2017).



Thermal ALE Using Oxidation & 
Fluorination to Volatile Fluoride

Overall Reactions Using O3 & SF4:
Metal Nitride

TiN + 3 O3 + SF4  TiF4 + NO + 3 O2 + SO2

Metal Sulfide
WS2 + 7 O3 + 3/2 SF4  WF6 + 7/2 SO2+ 7 O2

Metal Selenide
MoSe2 + 9 O3 + 3/2 SF4  MoF6 + 2 SeO3 + 9 O2 + 3/2 SO2

Metal Carbide
NbC + 7/2 O3 + 5/4 SF4  NbF5 + CO + 7/2 O2 + 5/4 SO2

Elemental Metal
Ta + 5/2 O3 + 5/4 SF4  TaF5 + 5/2 O2 + 5/4 SO2

29



3. Oxidation, Conversion & Fluorination 
to Volatile Fluoride: W ALE Using O3, 

BCl3 & HF

Ozone

30
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Metal ALE Difficult Using Fluorination 
& Ligand-Exchange Reactions

Problems: (1) Many metals have volatile fluorides;  
(2) Fluorination too exothermal and yields metal 

fluoride layer too thick for ALE; (3) Stable & volatile 
reaction products difficult during ligand exchange.

Alternatives: New thermal ALE mechanisms based on 
“Oxidation-Conversion-Fluorination”.    
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W Thermal ALE Using “Oxidation-
Conversion-Fluorination” Mechanism
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Ellipsometer Can Monitor Both WO3
and W Film Thicknesses
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B2O3 Spontaneously Etched With HF

HF exposures: 100 
mTorr for 1 s

B2O3 films 
spontaneously etched at 
~2 Å per HF exposure

34N.R. Johnson & S.M. George, ACS Appl. Mater. Interfaces 9, 34435 (2017).



WO3 ALE with BCl3 & HF at 207oC

Initial WO3 samples 
prepared by oxidizing W 
ALD films with 600 W 

O2 plasma at 280oC

Etch rate of 4.19 Å/cycle

Tungsten is an etch stop 
for BCl3/HF etch process

35
N.R. Johnson & S.M. George, ACS Appl. Mater. Interfaces 9, 34435 (2017).



W ALE with O3, BCl3 and HF at 207°C

Linear W ALE

Etch rate of 2.56 
Å/cycle is slightly less 

than one unit cell length 
for body-centered cubic 

W of 3.19 Å

36
N.R. Johnson & S.M. George, ACS Appl. Mater. Interfaces 9, 34435 (2017).



Self-Limiting BCl3 & HF Reactions

Self-limiting exposures are 500 mTorr s for BCl3 & 2800 
mTorr s for HF.  Self-limiting etch rate is 2.45 Å/cycle.

N.R. Johnson & S.M. George, ACS Appl. Mater. Interfaces 9, 34435 (2017). 37



Self-Limiting O3 Reaction

Self-limiting O3
exposure is 3100 

mTorr s
Self-limiting etch 

rate is 2.44 Å/cycle

N.R. Johnson & S.M. George, ACS Appl. Mater. Interfaces 9, 34435 (2017). 38



WO3 & W Thicknesses During 
W ALE Using O3, BCl3 & HF

WO3 thickness oscillates with 
sequential O3 oxidation & 

BCl3/HF etch reactions 

W thickness reduced linearly 
with number of O3 oxidation 
& BCl3/HF etch reactions.  
Etch rate = 2.44 Å/cycle

39
N.R. Johnson & S.M. George, ACS Appl. Mater. Interfaces 9, 34435 (2017).



Removal of WO3 Thickness on W 
after W ALE

WO3 thickness can be reduced 
after W ALE using sequential 

BCl3 & HF exposures

W thickness remains nearly 
constant during sequential 

BCl3 & HF exposures

N.R. Johnson & S.M. George, ACS Appl. Mater. Interfaces 9, 34435 (2017). 40



Thermal ALE Using Oxidation, Conversion 
& Fluorination to Volatile Fluoride

Oxide Conversion Reactions Using BCl3:

Iron Oxide
Fe2O3 + 2 BCl3(g) → B2O3 +  2 FeCl3(g) 

Germanium Oxide
GeO2 + 4/3 BCl3(g) → 2/3 B2O3 + GeCl4(g)

Molybdenum Oxide
MoO3 + 2/3 BCl3(g) → 1/3 B2O3 + MoO2Cl2(g) 

Vanadium Oxide
VO2 + 4/3 BCl3(g) → 2/3 B2O3 + VCl4(g) 

Gallium Oxide
Ga2O3 + 2 BCl3(g) → B2O3 +  2 GaCl3(g) 
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Surface Chemistry for Thermal ALE of Metal 
Oxides, Metal Nitrides & Elemental Metals

1.  Al2O3 ALE with Al(CH3)3 & HF as reactants.  
Fluorination & ligand-exchange mechanism.

2.  TiN ALE with O3 & HF as reactants.  
Mechanism based on oxidation & fluorination to 

volatile fluoride.
3. W ALE with O3, BCl3 & HF as reactants.  

Mechanism based on oxidation, coversion & 
fluorination to volatile fluoride.
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