Edge Non-uniformity in Plasma Processing

Harjeet Hansi, Zach Rayha, Stephanie Villavicencio, Yanghyeon Kim

- Wafer fabrication houses want to increase yield which lead to increase profits for their customers.
- The outer edge of substrate (~10mm) is difficult to control.
 - The edge accounts for up to 10% of the yield.
 - The abrupt end of the substrate surface creates inherent electrical discontinuities at the edge region, forming voltage gradients that bend the plasma sheath.
 - This causes a change in ion and neutral concentration and trajectory, which impact etch results and variability.
- Process drift causes uniformity and selectivity problems over time.

- Plasma sheaths are joined to wall surfaces across thin positively charged layers.
- The mean ion velocity at the plasma-sheath edge be equal to the Bohm velocity: \(u_s \).
- Ambipolar Diffusion
- In a plasma, ions of charge +e and electrons of charge −e, can display interesting diffusive behavior in external electric fields.
- The solution is to smooth out extreme edge discontinuities and enhance edge performance, and this is done by tuning the plasma sheath at the edge to produce a constant, user-defined etch rate and ion angle.
- One strategy being used at Lam to achieve the degree of control now needed is providing numerous independent heaters or micro-zones to control the wafer temperature, which is a critical parameter impacting CD uniformity.