Fabrication and Characterization of Sub-100 nm Carbon Nanotube Vias

Changjian Zhou¹, Anshul Vyas², Patrick Wilhite², Phillip Wang³, Mansun Chan¹, and Cary Y. Yang² ¹Hong Kong University of Science and Technology, Hong Kong ²Santa Clara University, Santa Clara, CA, USA ³Applied Materials Inc. Santa Clara, CA, USA

Outline

- □ Introduction
- **CNT Via Test Structure**
- **D** Electrical Characterization
- **Results and Discussion**
- **Summary**

Outline

Introduction

- **CNT Via Test Structure**
- **D** Electrical Characterization
- **Results and Discussion**
- **Summary**

New interconnect materials needed

0.1

2011

2014

2017

Source: ITRS 2011

- Current copper interconnect suffers from electromigration at current density ~ 1 MA/cm²
- Increase of resistivity due to widthdependent scattering

5

2023

2020

Year

2026

Nanocarbons

Nanocarbons as Interconnect Materials

- Physical properties of CNT:
- High current carrying capability
 - > 10⁷ A/cm² (Cu ~ 10⁶ A/cm²) Electromigration resistant
- > High mobility and ballistic transport (6.45 K Ω /shell) \longrightarrow Low resistance
- High thermal conductivity ~3000 W/K.m (Cu ~ 400 W/K.m)

Nihei et al. Jpn. J. Apl. Phys. 44, 1626 (2005)

Objective and Approach

Objective: To determine electrical characteristics of CNT on-chip via interconnects as a potential replacement for Cu.

Outline

Introduction
CNT Via Test Structure
Electrical Characterization
Results and Discussion
Summary

Fabrication of Sub-1000 nm Vias

Fabrication of Sub-1000 nm Vias

SEM image after CNT growth

SEM image after polishing

Fabrication of Sub-150 nm Vias

Top-view and cross-sectional SEM image of 60 nm vias for CNT growth

Fabrication of Sub-150 nm Vias

Fabrication of Sub-150 nm Vias

Estimation of CNT areal density in via, *D*_{*CNT*}

Fabrication for Individual CNT Probing

CNT grown on Ti/Si

After encapsulation & partial polish

200 nm

After final polish

Outline

Introduction
CNT Via Test Structure
Electrical Characterization
Results and Discussion
Summary

Measurement setup for Single CNT Via

- □ *In situ* nanoprobing inside SEM
- Sub-1000nm CNT via

CNT array inside via

Measurement setup for Single CNT Via

- □ *In situ* nanoprobing inside SEM
- Sub-150nm CNT via

Probing a single CNT Via

Outline

Introduction
CNT Via Test Structure
Electrical Characterization
Results and Discussion
Summary

Electrical Characteristics of Sub-1000 nm Vias

Electrical Characteristics of Sub-1000 nm Vias

Via width (nm)	Via height (nm)	CNT diameter (nm)	# CNTs in via	CNT packing density (cm ⁻²)	Via resistance (Ω)	Via conductance (mS)
1000	1000	16.56	81	8.10E+09	215	4.65
800	1000	17.74	45	7.03E+09	408	2.45
700	1000	27.85	37	7.55E+09	423	2.36
600	1000	39.44	20	5.56E+09	543	1.84
500	1000	29.29	17	6.80E+09	649	1.54
400	1000	26.05	11	6.88E+09	1394	0.72

CNT diameter distribution in Sub-1000 nm Vias

Projected resistance from Sub-1000 nm Vias

Electrical Characteristics of a 60 nm Via

Electrical Characteristics of Single CNT

> W-probe enlarges during probing

High-current annealing (~3.5 mA) improves probe contact

Electrical Characteristics of Single CNT

Further Consideration – Metal-CNT Contact

Chemical bonding at end contact

- Saturated C-bonds
- Conduction modes of graphitic structure is unaffected
- Interface with concentric walls

Side Contact

Van der Waals bonding at side contact

- Larger interfacial separation
- C-bonds remain unsaturated, inhibiting conduction
- Interface with outermost wall only

Side and End Contacts

Wang et al., Adv. Mater. 22, 5350 (2010)

Contact improvement – Joule Heating

Kitsuki et al, APL 92, 173110 (2008)

Yamada et al, JAP 107, 044304 (2010)

- I-V nonlinearity reduced by stress current
- Interfacial gap remains large
- Contact resistance ~ few kΩ

Contact improvement – Deposited Tungsten

- Resistance with W-deposited contacts reduced significantly and independent of stress current
- Contact resistance minimized

Contact improvement – EBID-C + Joule Heating

Kim et al, IEEE Trans Nanotech. 11, 1223 (2012)

Outline

- □ Introduction
- **CNT Via Test Structure**
- **D** Electrical Characterization
- **Results and Discussion**
- **Summary**

Summary

CNT vias down to 60 nm width fabricated and characterized

- Linear I-V characteristics for vias and individual CNTs
- "Best" projected resistance for 30 nm CNT via ~ 5 x W via resistance
- Ongoing efforts to decrease CNT diameter and increase CNT packing density to reduce via resistance
- □ Additional contact engineering needed to reduce overall resistance
- □ Further considerations on contact resistance reduction with CNT growth process improvements

Thank You...

