Low-Power Resistive Memory with 1D and 2D Electrodes

Feng Xiong

Co-advisor: Prof. Yi Cui Co-advisor: Prof. Eric Pop

> Electrical Engineering, Stanford University

Timeline of Data Storage

Memory in Our Lives

Memory Hierarchy

G.W. Burr et al, J. of Vac. Sci & Tech. 28, 223 (2010)

Why Power Dissipation in Memory?

Intel CPU power in 45nm CMOS, memory is a big piece of the pie!

J. Howard, *ISSCC*, p. 108 (2010)

Phase Change Memory Scaling

H.-S. P. Wong et al, Proc. IEEE 98, 2201 (2010)

- Phase change memory is highly scalable with electrode size
- Use carbon nanotube (CNT) electrodes!

Outline

- Integrating CNT with PCMs
 - Phase change materials + CNT
 - Nanotube-PCM Device
 - Self-Aligned PCM Nanowire-Nanotube Device
- CNT Crossbar RRAM
 - Resistive Random Access Memory
 - CNT Crossbar
- Graphene Ribbons with PCM
 - 2D graphene ribbons
 - Scalable, flexible and inexpensive
- Summary

Phase Change Materials

Amorphous

'0' and **'1**'

Phase Change Memory Working Principle

- "set": crystallization \rightarrow data rate limiting (~10 ns)
- "reset": melt-quench \rightarrow current and power limiting (>0.1 mA)

Carbon Nanotube Overview

- Carbon nanotubes → 1D cylinder of carbon atoms
- Excellent electrical properties
 - High mobility ${\sim}10^4~cm^2V^{\text{-1}}s^{\text{-1}}$
 - Current density $\sim 10^9 \text{ Acm}^{-2}$ ($\sim 1000 \times \text{ of Cu}$)
 - No electromigration

1D heater – diameter 1~5 nm

On-chip growth by Chemical Vapor Deposition (CVD)

A. Liao et al., Phys. Rev. Lett. (2008)

Nanotube – PCM Device

- Make CNT nanogaps by AFM or electrical "cutting"
- CNT nanogap filled with PCMs (here GST)
- $I_{set} \sim 1 \ \mu\text{A}$, $I_{reset} \sim 5 \ \mu\text{A}$ (~100× < conventional PCM)

Modeling of Nanotube – PCM Device

F. Xiong, A. Liao, D. Estrada, E. Pop, Science 332, 568 (2011, April 29 cover article)

- Before switching, low current density \rightarrow low ΔT
- After switching, high current density \rightarrow high $\Delta T \rightarrow$ crystallization
- <u>Small volume</u> of PCM bit ~70 × 2.5 × 2.5 nm³ → 1 µA switching current

Scaling of Nanotube – PCM Devices

F. Xiong, A. Liao, D. Estrada, E. Pop, Science 332, 568 (2011, April 29 cover article)

- Examined >100 devices
- Devices highly scalable with bit size
- Thresholds $V_T \sim 3-10$ V, currents $I_{set} \sim 1 \ \mu$ A,

 $I_{reset} \sim 5 \ \mu A$ (~100× < conventional PCM)

Where Do We Go From Here?

F. Xiong, M.-H. Bae, Y. Dai, A. Liao, A. Behnam, E. Carrion, S. Hong, D. Ielmini, E. Pop, Nano Lett. 13, 464 (2013)

- How can we improve the PCM memory with nanotube electrodes?
- Create nanotube + nanowire device!

Where Do We Go From Here?

F. Xiong, M.-H. Bae, Y. Dai, A. Liao, A. Behnam, E. Carrion, S. Hong, D. Ielmini, E. Pop, Nano Lett. 13, 464 (2013)

Patent TF11063 Filed

- CNT heats PMMA \rightarrow creates nanotrench \rightarrow deposit PCM \rightarrow lift-off PMMA
- PCM nanowire self-aligned with CNT electrodes

Self-Aligned Nanotube-Nanowire Devices

F. Xiong, M.-H. Bae, Y. Dai, A. Liao, A. Behnam, E. Carrion, S. Hong, D. Ielmini, E. Pop, Nano Lett. 13, 464 (2013)

- Threshold voltage (V_T) shows some "burn-in"
- Excellent R_{OFF}/R_{ON} ratio (> 1000) approaches intrinsic GeSbTe limits
- Great platform to probe other materials, self-aligned DNA, molecules...

RESET Current Scaling

F. Xiong, M.-H. Bae, Y. Dai, A. Liao, A. Behnam, E. Carrion, S. Hong, D. Ielmini, E. Pop, Nano Lett. 13, 464 (2013)

- $I_{reset} \sim A^{0.83}$
- CNT electrode \rightarrow 100× reduction in I_{reset}
- Isotropic scaling (equal scaling of all three dimensions) \rightarrow I_{reset} \sim A^1
- non-isotropic scaling \rightarrow exponent of 0.83
- $I_{reset} / A \sim A^{-0.17} \rightarrow higher current density as device scales$

Outline

- Integrating CNT with PCMs
 - Phase change memory + CNT
 - Nanotube-PCM Device
 - Self-Aligned PCM Nanowire-Nanotube Device
- CNT Crossbar RRAM
 - Resistive Random Access Memory
 - CNT Crossbar
- Graphene Ribbons with PCM
 - 2D graphene ribbons
 - Scalable, flexible and inexpensive
- Summary

Resistive Random Access Memory

- Metal oxides (AIO_x, HfO_x, TiO_x)
- Movement of oxygen ions in E-field

CNT Crossbar RRAM

C.-L. Tsai, F. Xiong, E. Pop, M. Shim, ACS Nano 7, 5360-5366 (2013)

Top Electrode Voltage (V)

- CNT crossbar electrodes ~ 2 nm²
- High performance and low power

CNT Crossbar RRAM

C.-L. Tsai, F. Xiong, E. Pop, M. Shim, ACS Nano 7, 5360-5366 (2013)

$R_{\text{device}} = R_{\text{AIOx}} + R_{\text{CNT}} + R_{\text{contact}}$

- High-resistance-state (HRS) dominated by OFF state AlO_x bit
- Low-resistance-state (LRS) scales with CNT resistance to \sim 10 $M\Omega$

Outline

- Integrating CNT with PCMs
 - Phase change memory + CNT
 - Nanotube-PCM Device
 - Self-Aligned PCM Nanowire-Nanotube Device
- CNT Crossbar RRAM
 - Resistive Random Access Memory
 - CNT Crossbar
- Graphene Ribbons with PCM
 - 2D graphene ribbons
 - Scalable, flexible and inexpensive
- Summary

2D Graphene Ribbons instead of 1D CNTs?

- Graphene Ribbons (GRs) as building blocks:
 - Interconnects: High current capacity, good scalability and flexibility
 - Transistors: Semiconducting (<10 nm width)
 - Sensors: High chemical sensitivity

X. Li, et al., *Science* (2008).

J. Cai, et al., *Nature* (2010).

L. Jiao, et al., *Nat. Nanotechnol.* (2010).

Graphene-PCM Schematics

A. Behnam, et al., *Nano Lett.* **12**, 4424 (2012) A. Behnam, **F. Xiong**, et al., in review (2014)

 $L = 2 \ \mu m$, $W = 40 \ nm$, $L_G = 70 \ nm$

Graphene-PCM Device Characteristics

A. Behnam, F. Xiong, et al., in review (2014)

Two-Dimensional Materials

Contact Resistance to MoS₂

C. English, et al., *DRC* (2014) and submitted (2014)

Systematic study of contact resistance ($R_{\rm C}$)

-Various contact metals: Ni, Ti, Au

-Different metal deposition pressures $P_{\rm D}$ = 10⁻⁶ Torr, 10⁻⁹ Torr

In-situ Li Intercalation in MoS₂

- In-situ lithiation via electrochemical process
- Explore reversible Li_xMoS₂ properties
 - optical, electrical, thermal, thermoelectric

Lithiation / Delithiation

Summary

- Integration of CNT and PCMs
- Nanotube-PCM Device
 - 100× lower programming current/power
 - Device scaling
 - Supported by FEM
- Self-Aligned Lithography-Free Technique
 - Improve device performance
 - High on/off ratio and better endurance
- CNT Crossbar RRAM
 - High performance and low power
- Graphene-PCM Device
 - Scalable, flexible and CMOS compatible
 - Proof-of-concept

Acknowledgments

- Pop Group
- Cui Group
- Collaborators
- Funding:
 - DARPA YFA
 - MSD MARCO
 - Office of Naval Research (ONR)
 - Beckman Institute Graduate Fellowship

