

Tuning the threshold voltage of carbon nanotube transistors for flexible, CMOS circuit

Huiliang (Evan) Wang 5th PhD student in Zhenan Bao's group Department of Materials Science and Engineering Stanford University

Motivation for flexible electronics

Foldable E-paper display

Bendable phone screens

Artificial skins

ESEARCH

Wearable electronics

Motivation of carbon nanotubes

Technological Challenges

Challenge #1: SWNTs synthesized as a mixture of metallic and semiconducting tubes,

Aim: only semiconducting SWNTs needed

Challenge #2: Uncontrolled threshold voltage for lower-power, reliable circuit

Aim: symmetrical p-type and n-type device

Challenge #3: Shifts in the threshold voltage of device from previous voltage bias effect

Aim: Stable threshold voltage of device during operation

Sorting carbon nanotubes by polymers

Nish et. al., Nat. Nanotechnol., 2007, 2, p640-6

H.W.Lee, H.Wang. Z.Bao et. al., Nat. Communication, 2011, 2, 541 S. Park, H. Wang, Z. Bao et al., ACS Nano, 2012, 6, 2487.

Polymer side-chain effects

ES

EARCH

H.Wang, K.N.Houk, Z.Bao et. al., ACS Nano, 2014, 3, 2609-2617

Polymer backbone effects for large-diameter SWNTs

Transistor performance of our sorted tubes

mobility: up to 12 cm² / Vs on/off ratio: 10⁶

H.W.Lee, H.Wang. Z.Bao et. al., Nat. Communication, 2011, 2, 541 H.Wang, Z.Bao et. al., ACS Nano, 2013, 3, 2659-2668 H.Wang, Z.Bao et. al., ACS Nano, 2014

Challenge #1: SWNTs synthesized as a mixture of metallic and semiconducting tubes,

Aim: only semiconducting SWNTs needed

Challenge #2: Uncontrolled threshold voltage for lower-power, reliable circuit

Aim: symmetrical p-type and n-type device

Challenge #3: Shifts in the threshold voltage of device from previous voltage bias effect

Aim: Stable threshold voltage of device during operation

Doping of organic semiconductors

Doping by vacuum evaporation

Tuning the threshold voltage by different thickness of dopants

Tuning of threshold voltage and carrier density

5 devices were measured at each doping thickness, small error bars

Why we have threshold voltage shifts

The Fermi energy of SWNT reduces with the higher doping concentrations From photoelectron spectroscopy measurement

Device performance and output curves

Symmetrical p-type and n-type output curve for n-doped devices at certain thickness

CMOS inverter and their advantage

Inverter with inkjet printed dopants

Comparison with other inverters

Tuning threshold voltage in flexible transistors

Flexible CMOS logic circuits

Flexible inverters with high noise margin

ARCH

S

Nanowatt power-consumption CMOS NAND and NOR

Technological Challenges

Challenge #1: SWNTs synthesized as a mixture of metallic and semiconducting tubes,

Aim: only semiconducting SWNTs needed

Challenge #2: Uncontrolled threshold voltage for lower-power, reliable circuit

Aim: symmetrical p-type and n-type device

Challenge #3: Shifts in the threshold voltage of device from previous voltage bias effect

Aim: Stable threshold voltage of device during operation

3rd Challenge: Stability of Devices

Large hysteresis, unstable threshold voltage (especially under bias stress)

Using Fluorinated Polymers as Top-Gate Dielectrics

No hysteresis observed, near zero threshold voltage

Low-Hysteresis at Different Rates and Samples

No hysteresis at different sweeping rate

Hysteresis distribution between 24 different devices

Electrical Bias Stability of the Devices

Small threshold voltage shifts under bias stress in comparison with organic and oxide TFTs

Tuning Threshold Voltage by Applying a Bottom Gate Voltage

H.Wang, Z.Bao et. al., Advanced Materials, 2014, 26,4588-4593

Ambipolar Device Behavior

Ambipolar device with P(VDF-TrFE-CTFE) as the gate dielectric

Conclusion 1 – Polymer sorting of nanotubes

Conclusion 2 – Improving Device Characteristics

Acknowledgment

- Advisor: Zhenan Bao
- Peng Liu, Gonzalo Jimenez-Oses, Prof Kendall N. Houk
- Peng Wei, Ben Naab, Yaoxuan Li, Jeff Han, Hye Ryoung Lee, Yi Cui, Chenggong Wang, Yongli Gao

Global Climate & Energy Project STANFORD UNIVERSITY

Any questions?

Thank you all for coming and listening!

Huiliang (Evan) Wang: Email: <u>whl0903@stanford.edu</u> Personal Website: www.huiliangwang.com

