Material Challenges for EUVL

AVS: Material Opportunities for Semiconductors Thursday, September 25, 2014

Challenges

- Source
 - High thermal load multilayers
 - In situ tin removal
- Optics
 - Spectral filters
 - Robust capping layers
- Mask
 - High efficiency pellicle
 - Defects
 - Roughness
- Resist
 - Photon harnessing
 - Materials stochastics

Multilayers

Multilayer mirrors required to build up adequate near normal reflectivity

Multilayer Defects

Buried (phase) defects lead to intensity variations at wafer

-25

0

25

50

-50

Modeled aerial image of 60-nm wide, 1-nm tall isolated defects through focus (25-nm steps) NA=0.35, σ = 0.5, Ideal optic 125 60 nm 60 nm

Patrick Naulleau | PNaulleau@lbl.gov

Sub-half-nm defect tolerance at 22-nm half pitch

CXR

Data courtesy of E. Gullikson, Berkeley Lab

Patrick Naulleau | PNaulleau@lbl.gov

Near-quarter-nm defect tolerance at 16-nm half pitch

+ 30 nm

defocus

NA=0.45, σ = 0.5, Centered defect

1.5 $\Delta CD/CD=20\%$ △CD/CD=10% Defect height (nm) 1.0 0.5 0.0 50 100 150 200 0 Defect FWHM (nm) $\lambda/2NA^{2} = 33 \text{ nm}$

- 30 nm

defocus

Data courtesy of E. Gullikson, Berkeley Lab

Patrick Naulleau | PNaulleau@lbl.gov

Mask Roughness

Mask sources of LER

 $\Delta \theta = 2h(2\pi/\lambda)$

Multilayer with replicated surface roughness (RSR)

Imaging transforms phase roughness to intensity speckle

Contrast = 0.9%

Imaging transforms phase roughness to intensity speckle

50-nm defocus $\sigma = 0.5$

Contrast = 6%

Imaging transforms phase roughness to intensity speckle

50-nm defocus $\sigma = 0.3$

Contrast = 9%

Wafer print demonstration

Model-based roughness specifications

Conformal growth of layers with random roughness

Individual layer roughness = total roughness/sqrt(N_{Lavers})

Interlayer roughness 38% more tolerant

Fully Conformal
Conformal random thickness

Model-based interlayer roughness specifications

Configuration	Single layer roughness* (pm)
22-nm, disk 0.5, 0.32 NA	7
16-nm, quad, 0.32 NA	12
16-nm, annular, 0.42 NA	12

* Assume 80 layers

Photoresist

Simultaneously meeting resolution, sensitivity, and LER crucial issue for EUV resists

2013 ITRS Roadmap

Thickness = 22nm, absorption = $4.2\mu m^{-1}$, dose = $20mJ/cm^{2}$

LER/sensitivity trends

CA resists surpassing 16-nm HP Resist A: 30 mJ/cm²

Resist B: 20mJ/cm²

Resist C: 22mJ/cm²

S4800 2.0kV 2.7mm x250k

S4800 2.0kV 2.7mm x250k

S4800 2.0kV 2.7mm x250k

S4800 2.0kV 2.7mm x250k

Multivariate Poisson Propagation Model, Gallatin SPIE 2005; Naulleau, Gallatin JVST 2010

	Resist A	Resist B	Resist C
Measured LWR @ 16 nm (nm)	3.1	4.8	3.8
Modeled Photon limited LWR (nm)*	2.1	2.7	2.5
Estimated material limited LWR (nm)	2.3	4.0	2.9
Modeled material limited LWR (nm)**	2.4	2.4	2.4

 * Use Multivariate Poisson Propagation Model, SPIE 2005, JVST 2010 ... Use ~11-nm resist blur determined from measured LER PSD Use supplier provided resist absorptivity = 0.0042 nm⁻¹
**Includes acid, PAG, and Quencher random variables based on assumed typical material parameters

Optimal blur = 0.5 × half pitch

For contacts, smaller blur is better

16-nm contact photon-limited CDU

Shrinking photon count big problem for future nodes

22 nm

half pitch (HP) = 11-nm Blur (pixel size) = 5 nm (0.5HP) Absorptivity = 0.0042 nm^{-1} (typical polymer resist value)

Only 30 photons absorbed!

Shrinking photon count big problem for future nodes

half pitch (HP) = 11-nm Blur (pixel size) = 3 nm (0.25 HP)Absorptivity = 0.0042 nm^{-1} (typical polymer resist value)

Only 12 photons absorbed!

What would it take to enable 20-mJ/cm² with 14-nm contacts?

• Assume absorptivity of 0.02 nm⁻¹

• Assume absorptivity of 0.02 nm⁻¹

- Assume absorptivity of 0.02 nm⁻¹
- Assume QE of 6

- Assume absorptivity of 0.02 nm⁻¹
- Assume QE of 6

Brainard et al. J. Photopolym. Sci. Technol. (2008)

P. Naulleau | PNaulleau@lbl.gov

- Assume absorptivity of 0.02 nm⁻¹
- Assume QE of 6
- Assume PAG loading of 0.5/nm³

- Assume absorptivity of 0.02 nm⁻¹
- Assume QE of 6
- Assume PAG loading of 0.5/nm³

%PAG	TPS-PFBS (Sulfonium, S+)			
5		Good		
7.5	OS-S1	Good		
10		Good		
15	OS-S2	Good	315	11
20		Good	318	13
25	OS-S3	Good	377	17
30	OS-S4	Good	501	21
40	OS-S5	Good	961	83
50	OS-S6	Good	1248	217
60	OS-S7	Good	1248	547
70	OS-S8	Good	1246	731

Brainard et al. J. Photopolym. Sci. Technol. (2008)

0.7/nr

- Assume absorptivity of 0.02 nm⁻¹
- Assume QE of 6
- Assume PAG loading of 0.5/nm³
- Acid blur = 3 nm, electron blur = 2 nm

- Assume absorptivity of 0.02 nm⁻¹
- Assume QE of 6
- Assume PAG loading of 0.5/nm³
- Acid blur = 3 nm, electron blur = 2 nm

Would enable 20 mJ/cm² for 14-nm contacts

- Biggest remaining EUV challenge is source power
- Multilayer materials challenges include defects and roughness
- Future photoresist materials will need to be more absorbing

Acknowledgements

Chris Anderson, Eric Gullikson, Ryan Miyakawa, Seno Rekawa, Farhad Salmassi

Suchit Bhattarai, Henry Wang, Andrew Neureuther,

Dominic Ashworth, Kevin Cummings, Stefan Wurm

