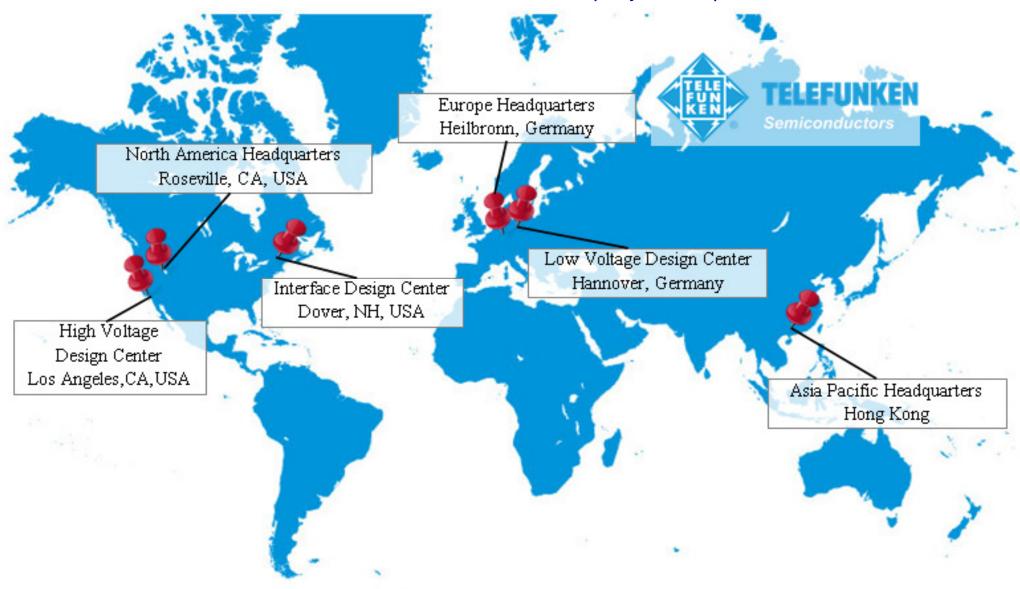


Integration of Disruptive Materials for Advanced Non-Volatile Memories

Wilbur Catabay

NCCAVS PAG User Group Meeting
"Plasma Applications in Novel Materials Processing"
April 29, 2013

- TSI Semiconductor, TDCS Overview
- Non Volatile Memory Trends
- Solutions for NVM Memory Development
- Process Module Blocks
- Summary

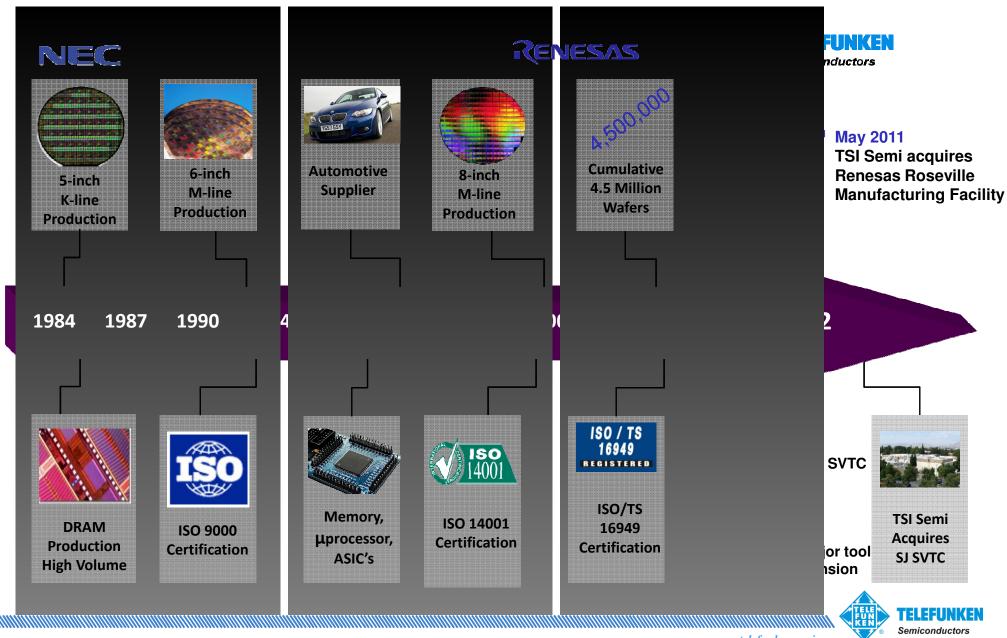

- Who, What is "Telefunken"?
 - German radio and television apparatus company, founded in Berlin 1903

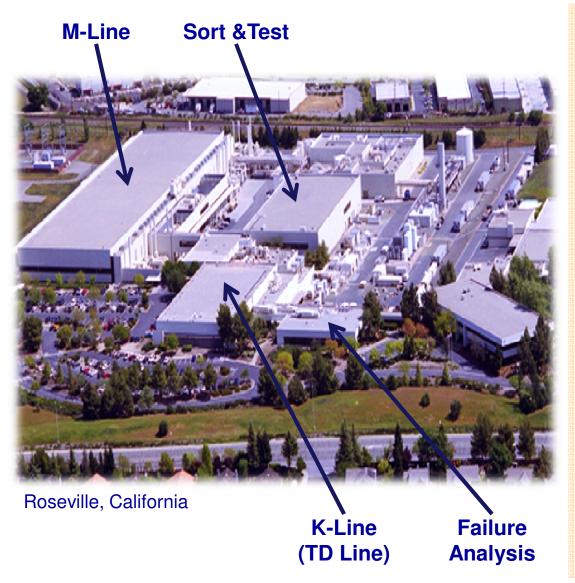
Telefunken water boiling from 2011

A modern Telefunken RC 881 cassette, CD player, and radio

TELEFUNKEN Semiconductors International is a US company & Incorporated in State of Delaware

World-Class Foundry Technologies in Smart-Power, Bipolar, High Voltage, Power MOSFET, IGBT, Embedded Flash, and High Frequency Platforms




Foundry, Heilbronn, Germany

Foundry & <u>TDCS</u>, Roseville, California Corporate Headquarters

TDCS – <u>Technology Development & Commercialization Services</u>

Capabilities

- Production grade tools in Class 3 Clean Rooms
- 84,000 square feet of Fab Clean Room Space
- Engineering Consultants and Program Managers
- 24/7 Engineering, Operations & Maintenance
- Manufacturing Execution Systems (MES)
- IP Secure Environments
- Robust Quality Systems
- Automotive Registered
- Onsite Analytical Tools & Labs
- Process Library
- Novel Materials
- AlSiCu BEOL
- Lithography Capable to 110nm
- Transparent Substrates
- Emerging Technology Capabilities

Provide World Class "More than Moore" Technology

leadership that establishes TDCS as the Premier

Nanotechnology partner from Lab to Commercialization

TDCS provides Technology Development & Commercialization Services in an open and flexible environment.

Infrastructure Access

Access to robust infrastructure for development & manufacturing needs

- R&D Wafer Processing
- Tool Hosting/ Clean Room Rental
- Hands on Access
- Tool Access
- Office Facilities
- Process Library

Engineering

Utilize blended pool of engineering services to support development efforts

- **Blended Engineering Pool**
- **Project Management**
- Analytical Services

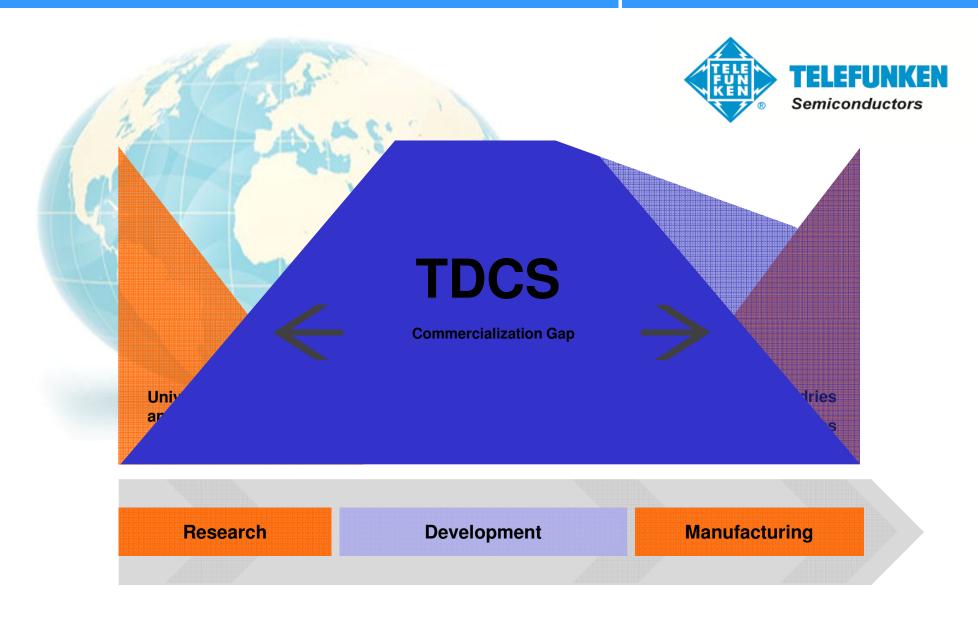
Manufacturing

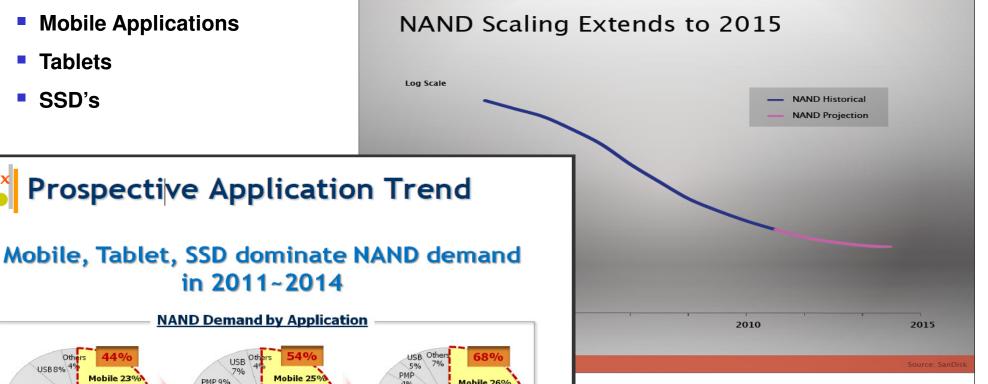
Pilot & low volume production or process transfer services to high volume partners

- Custom Process Flows
- Fast Transfer Services
- PDK's for High Voltage, MXS, Analog Devices

Value Chain

Provide total solutions through a network of service and product partners

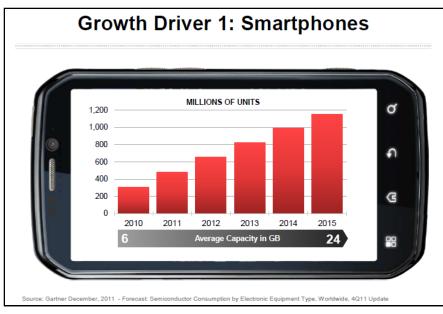


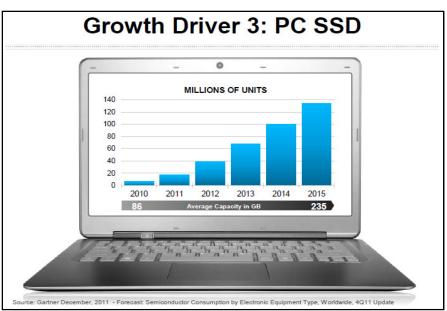

We create a collaborative relationship with customers to enable the fastest and most cost effective time to market for technology and product commercialization while enabling customer IP independence

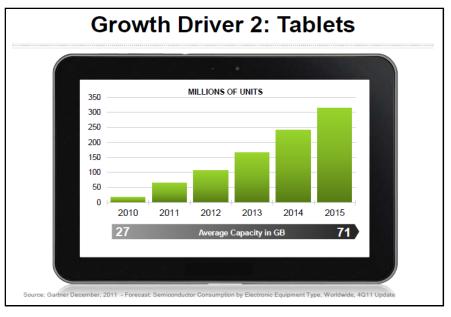
Cost-Effective Fast Cycles of **IP** Flexible Capability Solutions Independence Learning **Technology Production** Customer **CAPEX Development Process Grade Tools Retained IP Avoidance Engineering Expertise Variable Cost Development IP Security** & Availability **Environment Processes** Access **Customer Program Support for New** Access to Integrated **Value Chain** Management **Materials** Recipe IP Operational Excellence Multi-disciplinary Engineering **Customer Program Management**

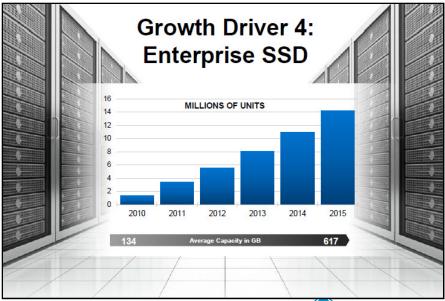
- TSI Semiconductor, TDCS Overview
- Non Volatile Memory Trends
- Solutions for NVM Memory Development
- Process Module Blocks
- Summary

- **Mobile Applications**
- **Tablets**
- SSD's

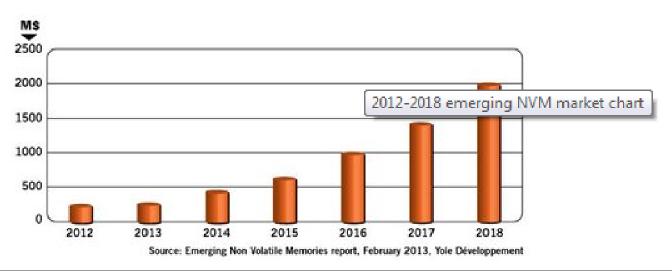


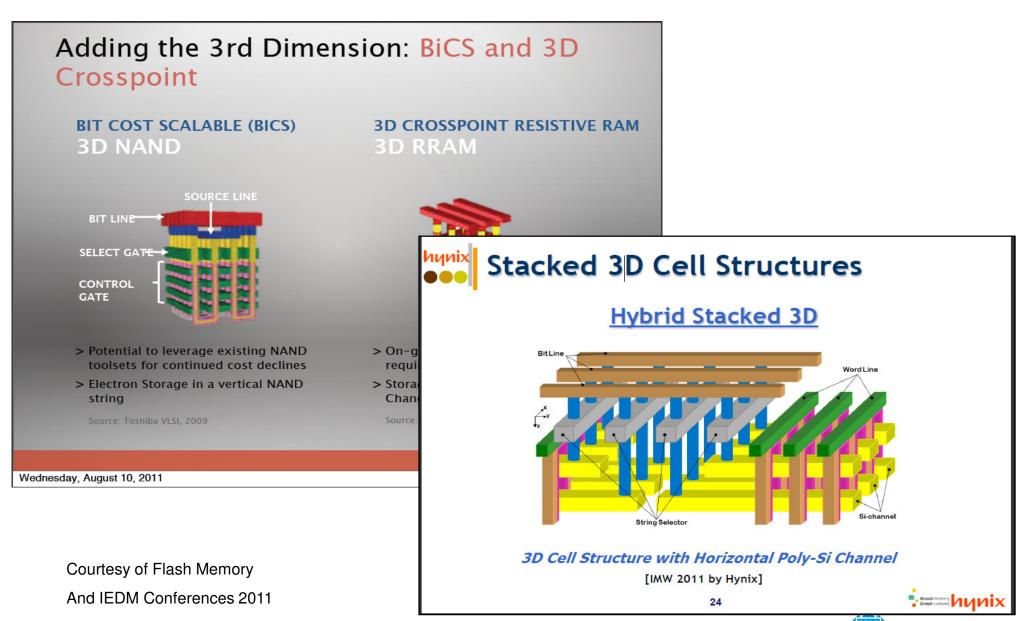

in 2011~2014 **NAND Demand by Application** Mobile 23% Mobile 26% PMP 13% Flash Card `12 Tablet 10% Tablet 12% Flash Card Tablet 18% Flash Card [Source; Hynix Marketing 2011] Great company NUNIX


Courtesy of Flash Memory And IEDM Conferences 2011


Growth Drivers for Memory Technology

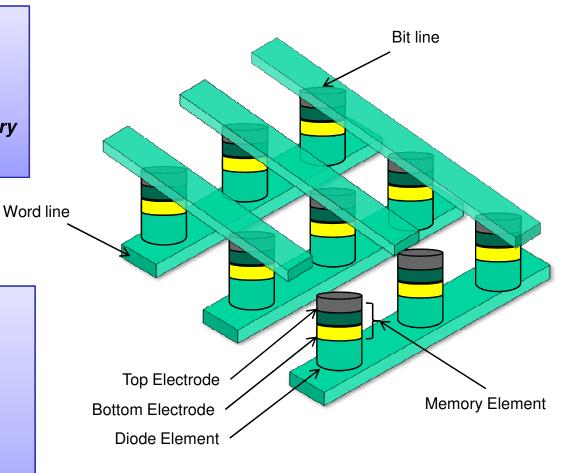
SPECIALIZED FOUNDRY SERVICES





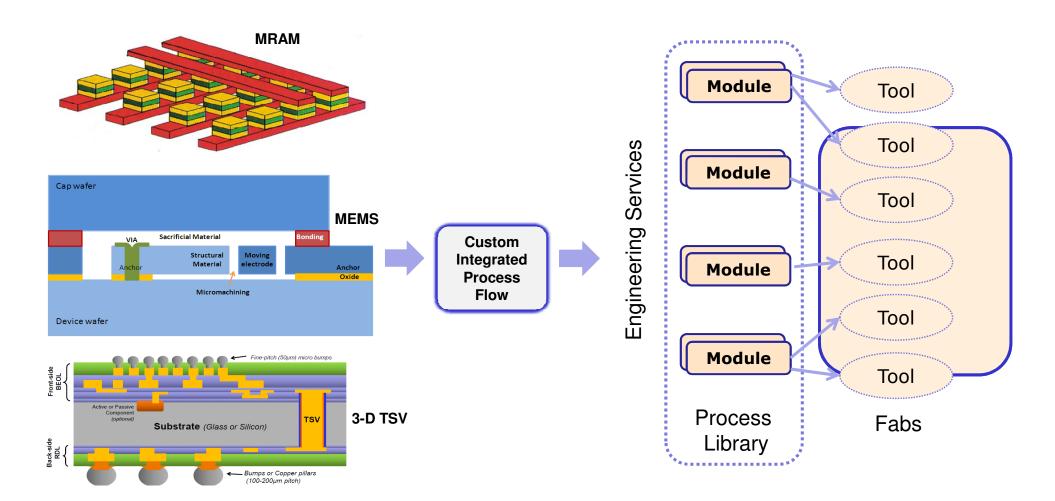
Yole Développement sees the PCM and MRAM markets reaching \$1.6 billion in 2018

Yole Développement released a new report on Emerging Non-Volatile Memories (which include four major technologies: MRAM, PCM, RRAM and FERAM). They see the market increasing ten-fold in the next five years to \$2 billion by 2018 (of which STT-MRAM and PCM will take the major share of \$1.6 billion) - mostly due to improved scalability and chip density.



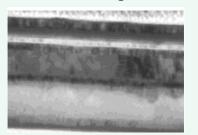
- Cross Point Memory (3D)
 - Re-use of Interconnects
 - Suitable for 3D Stacking
 - Can be Integrated with CMOS circuitry
 - Costs

- Cell Size
- Capable of Multi-level
- Performance and Reliability
- Scalability
- Re-use of Fabrication Techniques
- Costs

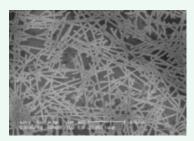


Emerging Memory Development

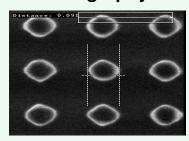
Device Type	HDD	DRAM	NAND Flash	FRAM	MRAM	STTRAM	PCRAM	NRAM
Maturity	Product	Product	Product	Product	Product	Prototype	Product	Prototype
Present Density	400Gb/in ² [7]	8Gb/chip [9]	64Gb/chip [10]	128Mb/chip	32Mb/chip	2Mb/chip	512Mb/chip	NA
Cell Size (SLC)	(2/3)F ²	6F ²	4F ²	6F ²	20F ²	4F ²	5F ²	5F ²
MLC Capability	No	No	4bits/cell	No	2bits/cell	4bits/cell	4bits/cell	No
Program Energy/bit	NA	2pJ	10nJ	2pJ	120pJ	0.02pJ	لر100م	10pJ ^[11]
Access Time (W/R)	9.5/8.5ms ^[8]	10/10ns	200/25us	50/75ns	12/12ns	10/10ns	100/20ns	10/10ns ^[11]
Endurance/Retention	NA	10 ¹⁶ /64ms	10 ⁵ /10yr	10 ¹⁵ /10yr	10 ¹⁶ /10yr	10 ¹⁶ /10yr	10 ⁵ /10yr	10 ¹⁶ /10yr
Device Type	RRAM	CBRAM	SEM	Polymer	Molecular	Racetrack	Holographic	Probe
Maturity	Research	Prototype	Prototype	Research	Research	Research	Product	Prototype
Present Density	64Kb/chip	2Mb/chip	128Mb/chip	128b/chip	160Kb/chip	NA	515Gb/in ²	1Tb/in ²
Cell Size	6F ²	6F ²	4F ²	6F ²	6F ²	N/A	N/A	N/A
MLC Capability	A	A	NI-	2bits/cell	No	12bits/cell	N/A	N/A
	2bits/cell	2bits/cell	No	Zuitsreell			1071	777.7
Program Energy/bit	26/ts/cell 2pJ	2bits/ceii 2pJ	13pJ	NA	NA	2pJ	N/A	100pJ ^[12]


Kryder, et al. IEEE Transactions on Magnetics, Vol. 45, October 2009

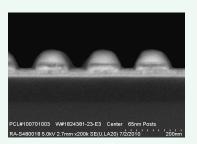
- TSI Semiconductor, TDCS Overview
- Non Volatile Memory Trends
- Solutions for NVM Memory Development
- Process Module Blocks
- Summary


Process library, tool set and engineering expertise enable development of custom integrated process flows for novel silicon based process technologies

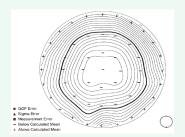
Material Integration


- DC ,RF & Co-Sputtering
- Metals, Metal Nitrides
- Mag Stack & Anneal

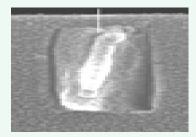
Novel Materials


- Atomic Layer Deposition
- Metals, Oxides, Nitrides
- Carbon Nanotubes

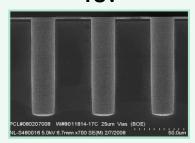
Lithography


- 110nm Lithography
- DP Spacer Techniques
- <110nm L/S, 110nm Posts</p>

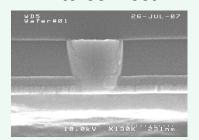
Novel Etch


- Nobel Metals
- High Temp:170-350C
- Physical Ion Milling

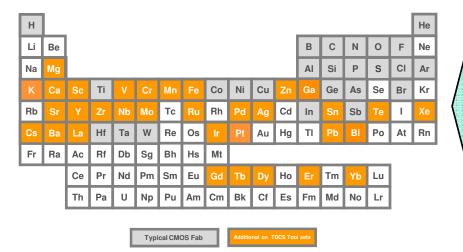
Low Temp Process


- <200C Modules</p>
- Nitride, Oxide Films
- Ash & Cleans

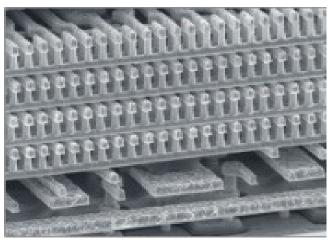
CMP


- Selective Slurries
- Oxide, Tungsten
- Exotic Materials

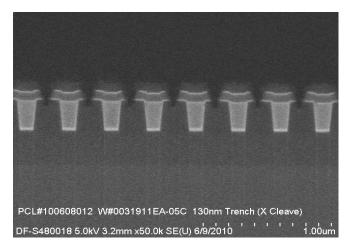
TSV

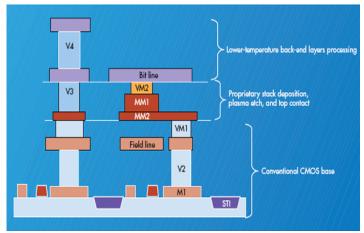

- DSiE
- Cu, W, Poly
- Barrier Materials

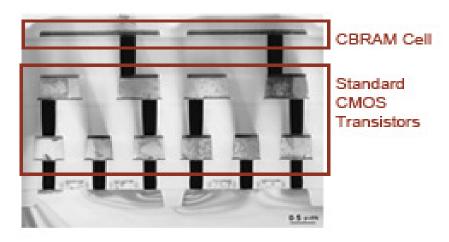
Interconnect



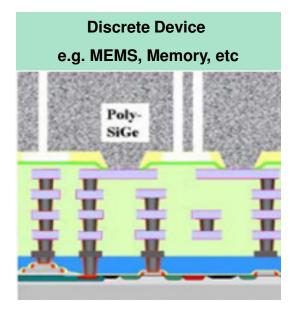
- Foundry CMOS
- Cu & Al interconnect
- Alignment


Memory Materials Development


Device	Materials	Process Module's
MRAM	Co, Fe, B, Ni Ta, Ti, Pt, Mn, Ru, Mg, Ir, Al, Metal Oxides	
PCRAM	Ag, GeS2, GST (Ge, Sb, Te)	Low temp processing (<200C)
ReRAM	Zr, Pr, Ca, Y, Pd, La, Complex Metal Oxides	Nobel Etch and CleansAlCu InterconnectInterconnect with CMOS
FeRAM	PZT (Pb, Zr, Ti, O), SBT (Sr, Bi, Ta, O), BLT (Bi, La, Ti, O)	Materials IntegrationCMPHardmask and LinerIntegration
NRAM	CNT, W	Double Patterning
SQC	Nb/AlOx/Nb, TiPt	


3-D Memory: Courtesy Sandisk

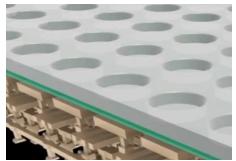
ReRAM Memory: Courtesy Company B


MRAM Memory: Courtesy Crocus

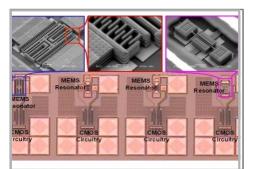
CBRAM Memory: Courtesy Adesto

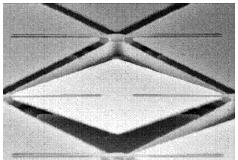
Case Example: Key Fabrication Elements

- Integration of CMOS Wafers to Memory
- Etch Integration
- Low Temperature Module Blocks
- Inter-Dielectric Planarity



	Pro	Con
Compact Solution	Increase Chip DensitySmaller Devices	 Integration challenges
Device Performance	 Less Interconnect Minimize parasitics Improved Device Performance 	 Challenge for devices with thermal requirements
Cost	Reduced AssemblyReduced PackagingLower Cost of Ownership	Potential Yield Mis-match between devices


Monolithic integration of Discrete Devices and CMOS


3-D Memory: Courtesy Sandisk

Lab-on-a-chip integrates microfluidics, sensors and logic to more rapidly perform gene sequencing oscillators, filters

MEMS Resonator on CMOS used imicro-Mirrors over CMOS (picture and mixers

RF domain: frequency references for courtesy of Spatial Photonics). Sample applications include Microdisplays

TELEFUNKEN

- Integration of CMOS Cu Wafers to Memory
- Etch Integration
- Low Temperature Module Blocks
- Inter-Dielectric Planarity

Spin Transfer Technologies raised \$36 million to accelerate its OST-MRAM technology development

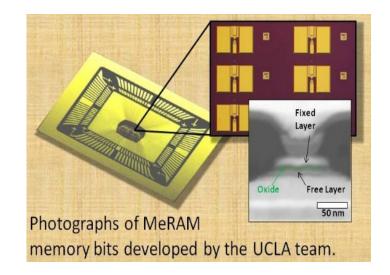
Spin Transfer Technologies (STT) announced that they raised \$36 million in series A funding led by parent company, Allied Minds and Invesco Asset Management. STT will use the money to accelerate the development of its patented orthogonal spin transfer magneto resistive random access memory technology (OST-MRAM) - by scaling operation, hiring new employees and purchasing equipment.

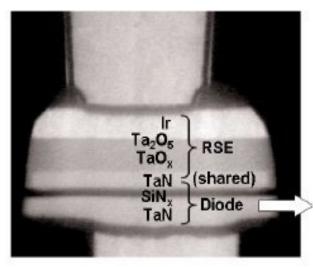
Toshiba designed an STT-MRAM/SRAM hybrid cache for ultra-low power processors

Toshiba has a new hybrid cache design that uses STT-MRAM and SRAM combination. This is aimed towards next-generation low-power computer processors. These new computers will usually be off, and the time and power it takes to "wake up" is considerable. The new design can reduce the energy consumption by around half - and does not effect processing capacity.

Micron and A*STAR to jointly develop high density STT-MRAM

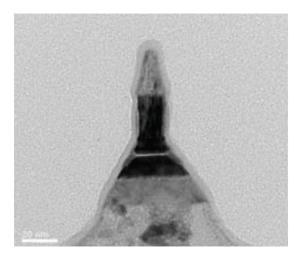
Micron and the A*STAR Data Storage Institute (DSI) from Singapore announced that they will jointly develop STT-RAM. The two companies will invest in a 3-year joint-research program to develop high-density STT-MRAM devices.


Toshiba and Hynix to co-develop and produce MRAM products

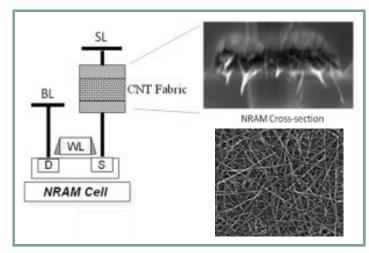

Toshiba and Hynix announced an agreement to jointly develop MRAM products. Once the development is complete, the companies intend to establish an MRAM production plant together. We believe the companies intend to develop STT-MRAM technology.

UCLA receives \$5.5 million to continue STT-RAM research

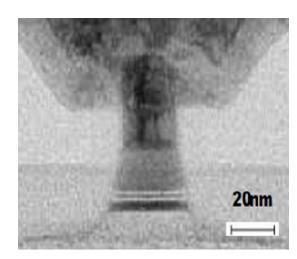
UCLA has been awarded \$5.5 million from DARPA to continue develop STT-MRAM technologies. This is the second grant for this project, which brings the total DARPA grants to \$10.5 million. The first stage has been completed a year early than planned - by meeting (and in fact significantly surpassing) speed, energy consumption and stability requirements of their STT-RAM (write times smaller than 5 nanoseconds and write energies lower than 0.25 picojoules per bit).

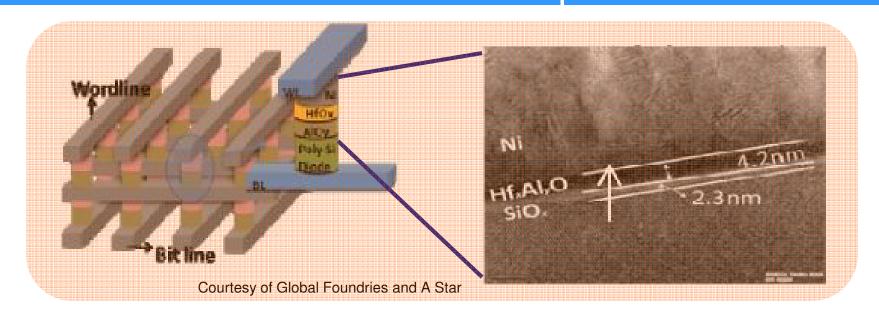


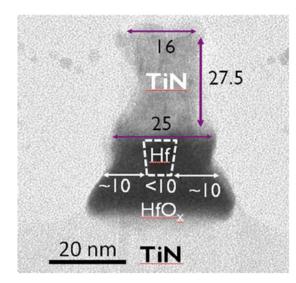
CBRAM Cell


Standard CMOS
Transistors

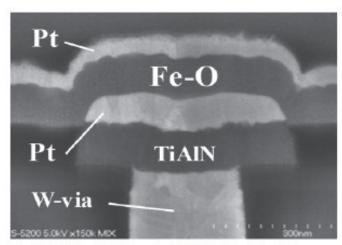
Panasonic ReRam


Adesto CBRAM


Samsung 17nm MTJ



Nantero NRAM



Toshiba MTJ

Courtesy of IMEC

ReRAM Cell Using FeO Variable Resistance Cross-section of the ReRAM memory cell prototyped by Matsushita Electric Industrial. Top and bottom electrodes are Pt.

Large Variation in Materials and Thicknesses, not one Etch Solution that fits all applications

Stack Thickness 500A to 1000A

Memory	Thickness (A)	
Ta	100 - 500A	
CoFeB	30A	
MgO	15A	
Ru	10A – 60A	
CoFe	40A	
PtMn	125A	
GST	500A	
Ag		
La		

Stack Thickness 1000A to 2.2um

Life Sciences	Thickness (A)	
Ta	50A	
Ru	10A - 20A	
NiFe	20A	
CoFe	475A	

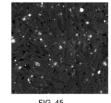
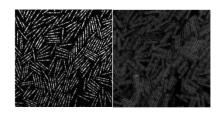



FIG. 46a

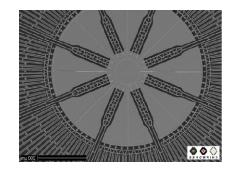
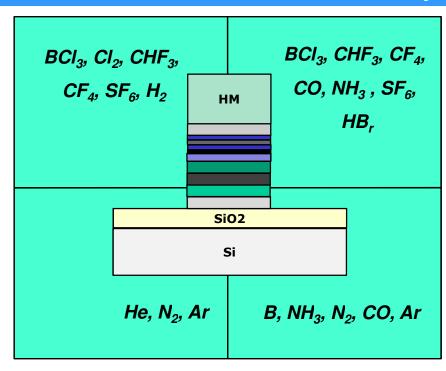


FIG. 46b

Stack Thickness 1000A to 1.4um

MEMS Compass	Thickness (A)
Со	500A
CoNi	600A
Ni	1000A
NiFe	500A
Al	10kA



Stack Thickness 500A to 2.2um

Other	Thickness (A)
Pt	1000A
PZT	Up to 2.2um
Nb	

Chemical Etch

Pressure Ranges			
Etch Types	Torr		
Ion Milling	10 ⁻⁴ – 10 ⁻³		
Reactive Ion Etch	10 ⁻³ – 10 ⁻¹		
Plasma Etch	10 ⁻¹ - 5		

Physical Etch

<100 mTorr

Higher Energy

Physical Etch (Sputtering)

- Physical momentum transfer
- Anisotropic etch profile
- Low etch rate
- Poor selectivity
- Radiation damage possible

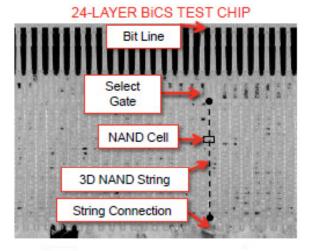
RIE (Reactive Ion Etch)

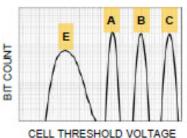
- Physical(ion) and chemical
- Anisotropic, controllable etch profile
- More selective than sputtering

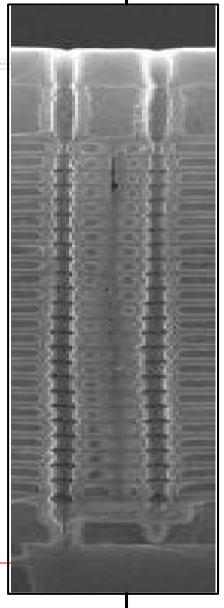
Plasma Etching

- Chemical, thus faster by 10-1000X
- Isotropic etch profile
- High etch rate
- Good selectivity
- Less prone to radiation damage

Etching of Novel Materials






	LAM 9600	AMAT DPS2	Tegal 6540	Veeco Ion Mill
Gases Available	Chamber A (60C): BCl3,Cl2, Ar, N2, O2,SF6,He,O2 Chamber B (250C): DSQ O2, H20	Chamber A (250C): BCl3,Cl2, Ar Chamber B (65C): CF4, HeO2,HBr,Cl2	HRe 2.1 (30-80C): BCl3, Cl2, CHF3, CF4, Ar, O2 HRe 4.0 (170-350C): CO, Cl2, NH3, CF4, Ar, O2	Single Chamber: Ar
Materials Etched	AI, TiN/AI/Ti, TiW/TiAI, GST	Chamber A: High-k, Al2O3, TiN, TaN, Ru Chamber B: Metal Gate Stacks - Poly & metal alloys	HRe 2.1: Oxide, Ti, TiN, W, Ta, GST HRe 4.0: Ti, TiN, Nb, Pt, AlOx,Ta, PtMn, CoFe, MgO, Ru, Ag	Oxide, Ti, TiN, W, Ag, CoFe

Update on BiCS 3D NAND

- VERTICAL 3D NAND STRING STRUCTURE
- UTILIZES EXISTING WAFER FAB INFRASTRUCTURE
- **DOES NOT NEED EUV**
- KEY DEVELOPMENTS
 - 24-layer array development vehicle
 - Multi-level cell (MLC) functionality shown
- BRIDGE TO 3D ReRAM

ANALYST DAY || FEBRUARY 16, 2012

- We continue to see innovative and disruptive materials development for next generation NVM technologies
- The challenge for NVM developers is to find a suitable replacement for existing NAND performance for capacity, performance, reliability and costs
- TDCS offers a comprehensive set of capabilities to develop and integrate Novel Memory technologies
- There will be one winner (or more), but it's still in the validation stage!

Thank You

Wilbur Catabay

VP Technology & Engineering TSI Semiconductor, TDCS

7501 Foothills Blvd.

Roseville, CA 95747

Tel: 408-218-9771

www.telefunkensemi.com

wilbur.catabay@telefunkensemi.com