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Overview

Tonization
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Attachment

e EEDF's influence the most critical aspects of low temperature plasmas

* Accurate measurement of EEDF’s over a large energy range are
difficult, and the only practical way to measure them is still with
Langmuir probes

e This talk focuses on some analysis challenges due to the geometry
dependence of EEDF measurement using finite dimension single tipped
Langmuir probes

* We will introduce a geometry dependent formulation for electron
current for a biased cylindrical probe and spherical probe and discuss
the ramifications of this geometry dependence on accurate
reconstruction of EEDF’s from probe IV characteristics

N

Distribytion (1/cm?*eV)




What we have been up to at NCSU —
demonstrating high accuracy analysis
techniques to obtain EEDF’s
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e Since the relationship between
the EEDF and the measured
probe data is an integral
problem, noise amplification of
the solution can be problematic

1.00E+13 |

— 50mtorr

— 100mtorr
«sseee B0 mtorr (S-G)
===+« 100mtorr (5-G)

1.00E+12 H*

fIE) (Hm"3leV)

1.00E+11

¢ Data smoothing techniques,
rigorous point by point
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differentiation, and analog T e
conditioning are the most

commonly used techniques to f(E) 4 \/_ MV e d2l,
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e Using integral techniques, more
accurate distributions are
obtained
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Generate an
arbitrary
EEDF f,..;

Calculate I,(V,,,)
from integral
relationship
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Generate an
arbitrary
EEDF f,..;

Calculate (V)
from integral
relationship
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The relationship between electron current
and EEDF

n, Vp’ ME)

* As an electron approaches a surface with a retarding potential V,, it
will either be collected or repelled based on it’s velocity vector
relative to the retarding potential.

e [f the perpendicular component of the velocity provides sufficient
energy to overcome the potential, the electron is collected.

* By assuming isotropic distributions, one can integrate over all
possible incident angles, accounting for the “perpendicular energy,
component” relative to the potential, and obtain an equation for
electron current.




Depending on your probe geometry, this

collection integral is different

Spherical Probes
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Depending on your probe geometry, this
collection integral is different

Spherical Probes

4 — L'l Vorobe
’ _ p€ | & (PN~ E
Iﬂ(pproba) - __E:_ f_fE =V rob f(E)\‘Eszg bdbdE

Cylindrical Probes

o]

(pmbe) j f(E) j dbdE e

E<Vyr b=0

ott-Smith and Langmuir
(1926). Physical Review 28(4),




NC STATE UNIVERSITY

In 1930, the more commonly used “Druyvesteyn
Relation” was derived for spherical probes (Physica 10
61)
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e This was only derived for the spherical geometry

e The cylindrical geometry does not have a nice analytical differential
form like the spherical solutions does

* In his paper, Druyvesteyn makes the assumption of geometry
invariance. This assumption was further developed by Kagan and
Purel in the 1960’s for Maxwell-Boltzmann distribution functions

e Since then, the second derivative form has been the way to get EE
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However, several works over the years
have hinted that this may not carry over
to any geometry

* Mott-Smith and Lanmguir reported a “geometry dependent effect” on electron
current where current density dropped by a factor of (1+2e®/mv?) for a spherical
probe and (1+2e®/mv?)!/2 for the cylindrical case (Phys. Rev. 28, 727 1926)

* Emeleus reported that electron deflection may have relevance when the distribution
is “sharply peaked” (Physical Letters 71A, Nos. 2,3 1979)

e Hoskinson and Hershkowitz reported “an electron current that increases more
quickly with voltage than in the ideal orbital motion limited theory” that they
attributed to finite probe length effects, but none-the-less suggested a dependence

between electron current collection and probe geometry (Plasma Sources Sci.
Technol. 15 pp. 85-90)

* Knappmiller and Robertson presented a differential cylindrical formulation for
EVDF that matched planar probe data analyzed with the Druyvesteyn relation
(Phys. Rev. E 73, 066402 (2006)
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Is the Druyvesteyn relation really geometry invariant... and if it

1

IS not, how does this impact EEDF analysis?




Is this a big deal or can we ignore it?
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Generate an
arbitrary EEDF
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*Perform a similar numerical
exercise that we did for
reconstruction strategies
*The goal here is to mimic an
experiment where someone is
using a cylindrical probe with
Druyvesteyn analysis and see
how it impacts the EEDF
measurement

Calculate I (Vo) from
cylindrical integral
(Equation 7)

Extract EEDF f_,. from
le(Viprobe) Using spherical
integral (Equation 10)

Compare f 4
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Comparison of Maxwellian type distributions...

3 eV Maxwellian 3 eV /5eV Bi-Maxwellian

10" . . . . ] 10"

Mlaxwellian ] [ 1
— — - Cylindrical probe |] [ — — - Cylindrical probe |]

T
Bimaxwellian

Electron Density (1;‘cm3 elf)

1 1 L 1 1
a 5] 10 15 20 25 30

Energy (eV)
Energy (V)

For most probe studies, this is probably not a killer. However, if we
really do need to worry about energy distribution control, and probes

are our only clue to what EEDF’s look like at higher energies for
model validation, etc... this could be important.
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What about “non-Maxwellian”
distributions?
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Distortion appears to get worse as distribution becomes less
“Maxwellian”... supporting Emeleus work from the 1950’s
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What about “non-Maxwellian”
distributions?
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Pressure Sweep
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Distortion vs. “Maxwellian-ness”
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Summary so far...

* Depending on your probe geometry, you will have a
different integral function that defines the collection of
electron current as a function of probe voltage

* The Druyvesteyn relation is derived for the spherical
probe case, and assumes geometric invariance and
applicability to other probe geometries

e Observations from other groups suggest that this may not
be the case

 Computational efforts (shown here) suggest that this
invariance assumption may have validity for Maxwellian
type distributions, but may distort measured EEDF’s for
non-Maxwellian conditions
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Using the cylindrical equation instead of the
Druyvesteyn has it’s challenges though...

* There is no simple differential form of the equation that
allows for EEDF analysis via simple data differentiation
(of course, with noise amplification, I say simple and then
laugh a little)

e Techniques for addressing experimental noise (data
smoothing, Boyd Twitty method, point by point
differentiation) have limited if any application for solving
the integral form of the problem

One way to address this is to solve the integral

problem instead of the differential problem
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Calculating Electron Current vs. Probe Voltage
for an arbitrary distribution function

Hystogram representation of the EEDF allows for the evaluation of non-
Maxwellian EEDF’s
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Yes... they are ugly... the good news is
that you only have to solve it one time!
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Reduces to a system of linear equations

Either of these solutions (spherical or cylindrical) is a linear system of
equations that relates electron current 1, to EEDF f, by a kernel K

|, = Kf,
Unfortunately, this is a very ill-conditioned problem that is not very
forgiving when there s experimental error in probe data.

Druyvesteyn Approach
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This technique enables use of algorithms that are very good at

handling noise amplifcation and subsequent distortion and error,
ElSaghir, Shannon (2011). I[EEE Trans. Plasma Sci. 39(1) pp. 596-602

1010 :

Maxwellian i F Maxwellian
— — EEPF Reconstructed Maxwellian [ — — EEPF Reconstructed Maxwellian
-------- Hybrid Recorstructed Maxwellian || [ ——0 |- Hybrid Reconstructed Maxwelian
=] -1
o (X\\H 10 i‘t(\\
3 1° \ 3 108
() l\‘\\ cﬂE
§ ™~ g
i —
s - \ i @ .ol
@ 1o { =0
1081 \ 108
10% L L L ' i 109 I L I L L
0 ] 10 15 20 25 30 0 S 10 15 20 28 30
Energy (EV) Energy (V)
(a) (b)
1010 ; 1010 : ‘ ‘
Maxwellian 1 C Maxwellian
— — EEPF Reconstructed Maxwellian |[] L — — EEPF Reconstructed Maxwellian
-------- Hybrid Recanstructed Maxwellian , -~~~ Hybrid Reconstructed Maxwellian

f(E) (1/cm3 eV)

107 L ! M f M ! I L g b 107 L i I i 4 L :
0 2 4 6 [ 10 12 14 16 18 20 0 2 4 6 B 10 12 14 16 18 20
Energy (eV) Energy (ev)
(c) (d)

Fig. 8. Comparison between the hybrid method and the EEPF Tikhonov method for different SNR values. (a) SNR = 100, (b) SNR = 50, (c) SNR = 20,
(d) SNR = 10.




NC STATE UNIVERSITY

Great! We'll just use this new integral

and everything will be just fine!

Not so fast... remember noise amplification for
the second derivative problem? It gets worse
for this one...
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Simple rule of thumb...
the faster the singular
values decay, the
greater the influence of
noise on your
reconstruction
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Things can get tricky at moderate
noise levels

Take a Maxwellian
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Preliminary measurements in Ar/H, plasmas

EEPF (1/cm3/eV3/2)
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Experimental setup for more detailed

study and comparison to computed
EEDF’s
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PIC simulation of CCP systems show
strong EEDF shift with respect to
hydrogen content
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Conclusions and Future Work

¢ Geometry dependence of the relationship between
electron current and EEDF has been derived for cylindrical
probe geometries

e Distortion of EEDF derivation from cylindrical probe
current when not accounting for probe geometry has been
demonstrated

* No free lunch - the integral problem is an even bigger
pain to deal with, and can be worse than the systematic
error generated by the integral formulation

e Currently comparing probe geometries in a system with
non-Maxwellian functions to validate
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